• Title/Summary/Keyword: interface analysis

Search Result 4,665, Processing Time 0.038 seconds

Direct calculation of interface warping functions for considering longitudinal discontinuities in beams

  • Lee, Dong-Hwa;Kim, Hyo-Jin;Lee, Phill-Seung
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.625-643
    • /
    • 2021
  • In this paper, we present a new method to calculate interface warping functions for the analysis of beams with geometric and material discontinuities in the longitudinal direction. The classical Saint Venant torsion theory is extended to a three-dimensional domain by considering the longitudinal direction. The interface warping is calculated by considering both adjacent cross-sections of a given interface. We also propose a finite element procedure to simultaneously calculate the interface warping function and the corresponding twisting center. The calculated interface warping functions are employed in the continuum-mechanics based beam formulation to analyze arbitrary shape cross-section beams with longitudinal discontinuities. Compared to the previous work by Yoon and Lee (2014a), both geometric and material discontinuities are considered with fewer degrees of freedom and higher accuracy in beam finite element analysis. Through various numerical examples, the effectiveness of the proposed interface warping function is demonstrated.

Determination of Steel-concrete Interface Parameters: Me chanical Properties of Interface Parameters (강-콘크리트 계면의 계면상수 결정 : 계면상수의 역학적 성질)

  • Lee, Ta;Joo, Young-Tae;Lee, Yong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.781-788
    • /
    • 2009
  • Mechanical properties of steel-concrete interface were evaluated on the basis of experimental observations. The properties included bond strength, unbounded and bonded friction angles, residual level of friction angle, mode I fracture energy, mode II bonded fracture energy and unbonded slip-friction energy under different levels of normal stress, and shape parameters to define geometrical shape of failure envelope. For this purpose, a typical type of constitutive model of describing steel-concrete interface behavior was presented based on a hyperbolic three-parameter Mohr-Coulomb type failure criterion. The constitutive model depicts the strong dependency of interface behavior on bonding condition of interface, bonded or unbounded. Values of the interface parameters were determined through interpretation of experimental results, geometry of failure envelope and sensitivity analysis. Nonlinear finite element analysis that incorporates steel-concrete interface as well as material nonlinearities of concrete and steel were performed to predict the experimental results.

Analysis for the influence of geometric characteristics on air-liquid interface with pressure (기하학적 구조에 따른 압력이 기체-액체 경계면에 미치는 특성 해석)

  • Heo, Pil-Woo;Park, In-Sub
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.213-213
    • /
    • 2011
  • Hydrophobic hairs of some insects make bubbles underwater. These bubbles makes possible for insects to breathe underwater. In this thesis, influence of geometric characteristics on air-liquid interface with pressure is investigated. Air-liquid interface shape with hair diameter over distance between hairs is analyzed This results expects to be used in the developments of artificial gill technology.

  • PDF

The Finite Element Analysis of Foundation Layer by Introducing Interface Element (접합요소를 도입한 기초지반의 유한요소해석)

  • 양극영;이대재
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.9-20
    • /
    • 2002
  • The purpose of this research is to develop computational procedures for studying nonlinear soil-structure interaction Problems. In orders to study soil-structure interaction behavior, the finite element analysis for the strip footing subjected to both vortical and lateral loads, and foundation layer reinforced with sheet pile are considered, interface elements are used between the footing and the soil to model the interaction behavior The main analyzed results are as follows; 1. For the prediction of settlement and lateral displacement, the result due to interface element was evaluated larger then without interface element. 2. For the determination of ultimate bearing capacity, the value using interface element appeared smaller by 12%, which was safe. 3. The horizontal and vertical displacement of strip footing affected by the presence of interface element.

Performance Comparison of Manual and Touch Interface using Video-based Behavior Analysis

  • Lee, Chai-Woo;Bahn, Sang-Woo;Kim, Ga-Won;Yun, Myung-Hwan
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.655-659
    • /
    • 2010
  • The objective of this study is to quantitatively incorporate user observation into usability evaluation of mobile interfaces using monitoring techniques in first- and third-person points of view. In this study, an experiment was conducted to monitor and record users' behavior using Ergoneers Dikablis, a gaze tracking device. The experiment was done with 2 mobile phones each with a button keypad interface and a touchscreen interface for comparative analysis. The subjects included 20 people who have similar experiences and proficiency in using mobile devices. Data from video recordings were coded with Noldus Observer XT to find usage patterns and to gather quantitative data for analysis in terms of effectiveness, efficiency and satisfaction. Results showed that the button keypad interface was generally better than the touchcreen interface. The movements of the fingers and gaze were much simpler when performing given tasks on the button keypad interface. While previous studies have mostly evaluated usability with performance measures by only looking at task results, this study can be expected to contribute by suggesting a method in which the behavioral patterns of interaction is evaluated.

A Study on the Effect of Topside and Interface on Hull in Whole Ship Analysis of Ship Type Offshore Structure (Ship Type 해양 구조물 전선 해석 시 Topside와 Interface가 Hull에 미치는 영향 연구)

  • Seo, Joon-Gyu;Kang, Ho-Yun;Park, Jung-Ki
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.5
    • /
    • pp.314-321
    • /
    • 2021
  • In the existing whole ship analysis, topside was modeled as mass element. However recently, the topside is modeled as beam element due to the owner's requirement to improve the maturity of the whole ship FE model. To follow the owner'srequirement, detailed information for topside drawing and modeling, which may delay analysis schedule, is needed. However, it is hard to respond effectively to this matter due to the lack of study on the topside from the hull perspective. Therefore in this study, the effect of the topside on the hull is investigated when the topside is modeled as a mass element or beam element respectively. In addition, the interface modeling method is analyzed to verify modeling method used in the existing whole ship analysis. The results indicate that the interface and topside modeling method used in existing whole ship analysis are appropriate. This conclusion will be the technical basis for responding to owner's requirement about the topside modeling method.

Fundamental Study on Analysis of the Bonding Effect on Asphalt Pavement (아스팔트포장의 경계층 영향에 대한 해석적 기초연구)

  • Choi, Jun-Seong
    • International Journal of Highway Engineering
    • /
    • v.7 no.3 s.25
    • /
    • pp.11-21
    • /
    • 2005
  • To examine adequacy of existing multi-layer elastic analysis of layer interface conditions, this study compared outputs of finite element analysis and multi-layer elastic analysis as vertical load was applied to the surface of asphalt pavements. Structural pavement analysis considering influence of a horizontal load was also carried out in order to simulate passing vehicle loads under various interface conditions using ABAQUS, a three dimensional finite element program. Pavement performance depending on interface conditions was quantitatively evaluated and fundamental study of layer interface effect was performed in this study. As results of the study, if only vertical load is applied, subdivision of either fully bonded or fully unbonded is enough to indicate interface condition. On the other hand, when horizontal load is applied with vertical load, pavement behavior and performance are greatly changed with respect to layer interface condition.

  • PDF

Analysis on the Interface Edge Crack in Aluminum Bonded Single Lap-joint (알루미늄 단순겹치기 접착이음의 에지계면균열에 대한 연구)

  • Yu, Y.C.;Park, J.H.;Jeong, E.S.;Yi, W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.655-659
    • /
    • 1997
  • The analysis of cracks at the interface between dissimilar materilar has received a great deal of attention in recent years. In this paper we conducted the static tensile test for the aluminum bonded single lap-joint with the interface edge crack. Comparing this results, that is ultimate load and strain value of aluminum adherend by strain gauge with the fracture mechanics parameters, compliance and stress intensity factors acquied from the boundary element analysis, we concluded that there are critical value of crack length to provoke the interface fracture.

  • PDF

Thermal Stress Analysis of Drums Brakes by Finite Element Method (유한요소법에 의한 드럼 브레이크의 열응력 해석)

  • Goo, Byeong-Choon;Seo, Jung-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.831-836
    • /
    • 2001
  • In the case of axisymmetric thermal analysis of drum brakes, the distribution of frictional heat produced on the interface and temperature difference between mating frictional faces are very interesting problems to computational researchers. In this paper, heat conduction from the interface to the pad and the drum was modeled by using a thin interface element, so artificial division of the generated frictional heat between pad and drum is not necessary. Temperature difference between mating frictional faces is successfully modeled by using the interface element. The influence of some parameters on tile thermal stress was checked. The analysis was performed by ABAQUS/Standard code.

  • PDF

Nonlinear analysis of finite beam resting on Winkler foundation with consideration of beam-soil interface resistance effect

  • Zhang, L.;Zhao, M.H.;Xiao, Y.;Ma, B.H.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.5
    • /
    • pp.573-592
    • /
    • 2011
  • Comprehensive and accurate analysis of a finite foundation beam is a challenging engineering problem and an important subject in foundation design. One of the limitation of the traditional Winkler elastic foundation model is that the model neglects the effect of the interface resistance between the beam and the underneath foundation soil. By taking the beam-soil interface resistance into account, a deformation governing differential equation for a finite beam resting on the Winkler elastic foundation is developed. The coupling effect between vertical and horizontal displacements is also considered in the presented method. Using Galerkin method, semi-analytical solutions for vertical and horizontal displacements, axial force, shear force and bending moment of the beam under symmetric loads are presented. The influences of the interface resistance on the behavior of foundation beam are also investigated.