• Title/Summary/Keyword: interest points

Search Result 699, Processing Time 0.035 seconds

A Matching Strategy to Recognize Occluded Number (폐색된 숫자를 인식하는 매칭 방법)

  • Pham, Thi Thuong;Choi, Hyung-Il;Kim, Gye-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.55-58
    • /
    • 2011
  • This paper proposes a method of occluded number recognition by matching interest points. Interest points of input pattern are found via SURF features extracting and matched to interest points of clusters in database following three steps: SURF matching, coordinate matching and SURF matching on coordinate matched points. Then the satisfied interest points are counted to compute matching rate of each cluster. The input pattern will be assigned to cluster having highest matching rate. We have experimented our method to different numerical fonts and got encouraging results.

  • PDF

Distinct Point Detection : Forstner Interest Operator

  • Cho, Woo-Sug
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.2
    • /
    • pp.299-307
    • /
    • 1995
  • The extraction of distinct points such as corner points and circular features is a basic procedure in digital photogrammetry and computer vision. This paper describes the extraction of image features from the raw images (gray value images), especially Forstner interest corner points. The mathematical model of the Forstner interest operator as well as the behavior in the presence of noise are investigated. Experiments with real images prove the feasibility of the Forstner interest operator in the field of Digital Photogrammetry.

  • PDF

Automatic Registration of High Resolution Satellite Images using Local Properties of Tie Points (지역적 매칭쌍 특성에 기반한 고해상도영상의 자동기하보정)

  • Han, You-Kyung;Byun, Young-Gi;Choi, Jae-Wan;Han, Dong-Yeob;Kim, -Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.3
    • /
    • pp.353-359
    • /
    • 2010
  • In this paper, we propose the automatic image-to-image registration of high resolution satellite images using local properties of tie points to improve the registration accuracy. A spatial distance between interest points of reference and sensed images extracted by Scale Invariant Feature Transform(SIFT) is additionally used to extract tie points. Coefficients of affine transform between images are extracted by invariant descriptor based matching, and interest points of sensed image are transformed to the reference coordinate system using these coefficients. The spatial distance between interest points of sensed image which have been transformed to the reference coordinates and interest points of reference image is calculated for secondary matching. The piecewise linear function is applied to the matched tie points for automatic registration of high resolution images. The proposed method can extract spatially well-distributed tie points compared with SIFT based method.

Structural Change Analysis in a Real Interest Rate Model (실질금리 결정모형에서의 구조변화분석)

  • 전덕빈;박대근
    • Korean Management Science Review
    • /
    • v.18 no.1
    • /
    • pp.119-133
    • /
    • 2001
  • It is important to find the equilibrium level of real interest rate for it affects real and financial sector of economy. However, it is difficult to find the equilibrium level because like the most macroeconomic model the real interest model has parameter instability problem caused by structural change and it is supported by various theories and definitions. Hence, in order to cover these problems structural change detection model of real interest rate is developed to combine the real interest rate equilibrium model and the procedure to detect structural change points. 3 equations are established to find various effects of other interest-related macroeconomic variables and from each equation, structural changes are found. Those structural change points are consistent with common expectation. Oil Crisis (December, 1987), the starting point of Economic Stabilization Policy (January, 1982), the starting point of capital liberalization (January, 1988), the starting and finishing points of Interest deregulation (January, 1992 and December, 1994), Foreign Exchange Crisis (December, 1977) are detected as important points. From the equation of fisher and real effects, real interest rate level is estimated as 4.09% (October, 1988) and dependent on the underlying model, it is estimated as 0%∼13.56% (October, 1988), so it varies so much. It is expected that this result is connected to the large scale simultaneous equations to detect the parameter instability in real time, so induces the flexible economic policies.

  • PDF

Image Retrieval Method Based on IPDSH and SRIP

  • Zhang, Xu;Guo, Baolong;Yan, Yunyi;Sun, Wei;Yi, Meng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1676-1689
    • /
    • 2014
  • At present, the Content-Based Image Retrieval (CBIR) system has become a hot research topic in the computer vision field. In the CBIR system, the accurate extractions of low-level features can reduce the gaps between high-level semantics and improve retrieval precision. This paper puts forward a new retrieval method aiming at the problems of high computational complexities and low precision of global feature extraction algorithms. The establishment of the new retrieval method is on the basis of the SIFT and Harris (APISH) algorithm, and the salient region of interest points (SRIP) algorithm to satisfy users' interests in the specific targets of images. In the first place, by using the IPDSH and SRIP algorithms, we tested stable interest points and found salient regions. The interest points in the salient region were named as salient interest points. Secondary, we extracted the pseudo-Zernike moments of the salient interest points' neighborhood as the feature vectors. Finally, we calculated the similarities between query and database images. Finally, We conducted this experiment based on the Caltech-101 database. By studying the experiment, the results have shown that this new retrieval method can decrease the interference of unstable interest points in the regions of non-interests and improve the ratios of accuracy and recall.

Real-time Multi-Objects Recognition and Tracking Scheme (실시간 다중 객체 인식 및 추적 기법)

  • Kim, Dae-Hoon;Rho, Seung-Min;Hwang, Een-Jun
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.386-393
    • /
    • 2012
  • In this paper, we propose an efficient multi-object recognition and tracking scheme based on interest points of objects and their feature descriptors. To do that, we first define a set of object types of interest and collect their sample images. For sample images, we detect interest points and construct their feature descriptors using SURF. Next, we perform a statistical analysis of the local features to select representative points among them. Intuitively, the representative points of an object are the interest points that best characterize the object. in addition, we make the movement vectors of the interest points based on matching between their SURF descriptors and track the object using these vectors. Since our scheme treats all the objects independently, it can recognize and track multiple objects simultaneously. Through the experiments, we show that our proposed scheme can achieve reasonable performance.

Text Detection in Scene Images Based on Interest Points

  • Nguyen, Minh Hieu;Lee, Gueesang
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.528-537
    • /
    • 2015
  • Text in images is one of the most important cues for understanding a scene. In this paper, we propose a novel approach based on interest points to localize text in natural scene images. The main ideas of this approach are as follows: first we used interest point detection techniques, which extract the corner points of characters and center points of edge connected components, to select candidate regions. Second, these candidate regions were verified by using tensor voting, which is capable of extracting perceptual structures from noisy data. Finally, area, orientation, and aspect ratio were used to filter out non-text regions. The proposed method was tested on the ICDAR 2003 dataset and images of wine labels. The experiment results show the validity of this approach.

Extraction of Characteristic Information for Image Matching (영상매칭을 위한 특성정보 추출)

  • 이동천;염재홍;김정우;이용욱
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.171-176
    • /
    • 2004
  • Image matching is fundamental process in photogrammetry and computer vision to identify and to measure corresponding features on the multiple images. Uniqueness of the matching entities and robustness of the algorithm are the key issues that have influence on quality of the matching result. The optimal solution could be obtained by utilizing appropriate matching entities in the first place. In this study, candidate matching points were extracted by interest operator, and an area-based matching method was applied with characteristics of the gray value distribution as the matching entities. The characteristic information is based on the concept of "intrinsic image" (or parameter image). The information was utilized as additional and/or complementary matching entities. Matching on interest points with the characteristic information resulted in high quality of matching because matching windows were created with surrounding pixels of the interest points that contain distinct and unique features. The experiment shows that matching quality and reliability increase by exploiting interest operator, and the characteristic information has potential to be matching entity.

  • PDF

Recognizing Static Target in Video Frames Taken from Moving Platform

  • Wang, Xin;Sugisaka, Masanori;Xu, Wenli
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.673-676
    • /
    • 2003
  • This paper deals with the problem of moving object detection and location in computer vision. We describe a new object-dependent motion analysis method for tracking target in an image sequence taken from a moving platform. We tackle these tasks with three steps. First, we make an active contour model of a target in order to build some of low-energy points, which are called kernels. Then we detect interest points in two windows called tracking windows around a kernel respectively. At the third step, we decide the correspondence of those detected interest points between tracking windows by the probabilistic relaxation method In this algorithm, the detecting process is iterative and begins with the detection of all potential correspondence pair in consecutive image. Each pair of corresponding points is then iteratively recomputed to get a globally optimum set of pairwise correspondences.

  • PDF

People Counting Method using Moving and Static Points of Interest (동적 및 정적 관심점을 이용하는 사람 계수 기법)

  • Gil, Jong In;Mahmoudpour, Saeed;Whang, Whan-Kyu;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.22 no.1
    • /
    • pp.70-77
    • /
    • 2017
  • Among available people counting methods, map-based approaches based on moving interest points have shown good performance. However, the stationary people counting is challenging in such methods since all static points of interest are considered as background. To include stationary people in counting, it is needed to discriminate between the static points of stationary people and the background region. In this paper, we propose a people counting method based on using both moving and static points. The proposed method separates the moving and static points by motion information. Then, the static points of the stationary people are classified using foreground mask processing and point pattern analysis. The experimental results reveal that the proposed method provides more accurate count estimation by including stationary people. Also, the background updating is enabled to solve the static point misclassification problem due to background changes.