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Distinct Point Detection : Forstner Interest Operator
Cho, Woo-Sug*

ABSTRACT

The extraction of distinct points such as comer points and circular features is a basic procedure in digital pho-
togrammetry and computer vision. This paper describes the extraction of image features from the raw images
(gray value images), especially Forstner interest corner points. The mathematical model of the Forstner interest
operator as well as the behavior in the presence of noise are investigated. Experiments with real images prove

the feasibility of the Forstner interest operator in the field of Digital Photogrammetry.
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1. Introduction

With digital imagery from various sources as
well as high performance computer hardware and
software, the automation in photogrammetric
processes such as relative orientation, aerial tri-
angulation, and surface reconstruction becomes pos-
sible. One of most fundamental tasks in pho-
togrammetry is to find conjugate features in two or
more images, which is commonly referred to as
the matching problem.

Medioni and Nevatia [1984] argue “the higher
the level of descriptions at which mathching is at-
tempted, the more likely the desciptions are to be
invariant to imaging changes, but this gain may be
offset by the errors and deficiencies of the current
programs that compute these descriptions . It is
true that the invariance of high level descriptions

facilitates the matching process, but a good high
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level desciption can only be extracted after the im-
age has been interpreted [Vosselman 1992]. Con-
sidering a comprise between invariance and cor-
rectness of feature descriptions, point feature ex-
traction is a primary concern in most automatic
photogrammetric procedures.

There has been much research in the field of dis-
tinct point detection [Moravec 1977, Dreschler and
Nagel 1981, Mikhail 1984, Forstner and Gulch
1987, Forstner 1994, Tang and Heipk 1994]. These
previous works show that the Moravec operator
and the Firstner interest operator perform best for
real images. Compared with the Moravec operator,
the Forstner interest operator has the salient fea-
tures such as rotation invariant and subpixel ac-
curacy.

2. Forstner Interest Operator

The implementation of the interest operator con-
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sists mainly of three steps:

1. Selection of optirnal windows for point de-
tection.

2. Classification of selected windows.

3. Determination of the point location within the
selected optimal windovvs.

The mathematical model of the interest operator
is first discussed before the fine details of the a-
bove three main steps.

2.1 Mathematical Model

It is assumed that an nXn window contains a
distinct point g,=(r.,c,)" and the edgel(edge element)
at each pixel within the window is defined as a
straight line passing through g=(r, c)’ with an
orinetation derived frora its gradient Vg; (see Fig-
ure 1(a)). The gradient 7 g=(g,, g.)=(3g/r, ag/ac;)
can be estimated by any available gradient opera-
tor such as the Robert gradient operator.

A conmer point can be estimated from the in-
tersection of all edgels, which is the point closest
to all straight lines. The straight line passing
through g=(r, c)" parallel to the edge direction is
given by the following equation

(-2)"6=0 @1

where £, = Vgl = (g:, 8" = | V| (cosg;, sing)"
Assuming that each edgel is independent and un-
certainty is included in gf - £, the above equation

reads as
l,=cos¢; - To+sing; - co+ny,i=1,...,nxn(=m) (2.2)
where 1=1(r,c)=cos ¢ ; - ¢ + sin ¢; - ¢; and n=(r;, c)).

It is assumed that the vveight of each straight line is
proportional to the absolute gradient squared

wi=g+e2 23)

This assumption is based on the fact that the pre-
cision of point location is dependent on the strength
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Fig. 1. Edge element model (a) and Slpoe element
model (b) for the Frstner interest operator.

of the gradient. Minimizing Q(to,co) = Y n? " w; With
i=1

respect to fy and & leads to the following normal e-

quation system

8 Y| fy| |8l T+ X
Yo Ye ||& [ Ypet Yl } @4)

A circular feature such as a blob or ring can be
also estimated using slope elements (slopels). For
corner point estimation, straight lines passing
through the points parallel to the edge direction are
used for corner point estimation (see Figure 1(b)).
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For circular features, straight lines going through
the points orthogonal to the edge direction are con-
sidered. These straight lines intersect at the center
of the circular feature. The equation for the straight
lines is '

(g-8)'f;=0 (2.5)
where f',=Vgl=|Vg|

responding linear equation (2.6) and target function
(2.7) are

- (—sing,cos¢)’ The cor-

L=-sing, ‘ r's+cosg, - c'o+n',i=1,... ,nxn(=m) (2.6)

(o0 = 3@ - w @7)

Using the same weight and minimizing £' yields

the following normal equation system

(2 BT o

The precision of estimated comer point and cir-

cular features can be obtained by the following e-
quations, respectively.

M[Zgz Z&&J

D(r‘,,co) Gy Egrgc Zgz 2.9)
2. — g -
D(ro & Y= o;uli %ch %:;r ] - (2.10)

where 3,2:&“’;3)— and gh2= 200G

m-— m-2

2.2 Optimal Window selection
Equations (2.9) and (2.10) show that the pre-
cision of estimated point location depends on noise

and the signal content of the window, that is, the
average squared gradient N. Assuming that noise
is constant, the decisive information is only con-
tained in the normal equation matrix N. Thus, the
task of selecting an optimal window is reduced to
a search for the local optima of the expected pre-
cision for the point location.

The search for an optimal window utilizes the
following two parameters.

» The size of the error ellipse (w): the average
precision of the point or the weight of the point is
defined as

=1 __ detN 2.11)
N1 trN

» The form of error ellipse (q): the roundness
of the error ellipse can be measured by the fol-
lowing equation, which ranges between 0 and 1

h-%
M+,

4detN
tr2N

= (2.12)

q=1-(

where A, and A, are eigenvalues for the normal e-
quation matrices in (2.4) and (2.8).

From equations (2.11) and (2.12) the two
parameters w and q can be directly detdermined
from the normal equation matrix N. When q is
equal to 1, the error ellipse is circular. When q is
equal to 0, the normal matrix is singular, which
means that the window does not contain a corner
or circular feature but an edge feature. Thus, the q
parameter can be used to exclude the points lying
on the edges and also can be used to detect the
edge points {Forstner 1986].

The selection of an optimal window is based on
the following two criteria:

+ The error ellipse should be small.

« The error ellipse should be close to a circle.

The first criterion guarantees that the selected op-
timal window is distinct and separable from its
neighborhood and that the accuracy of the es-
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timated point location is good. This leads to the fol-
lowing condition

w; =w,, for all € {ncighborhood of i}. (2.13)

A threshold for weight w, should be determined
with respect to the global image content. There are
two ways of selecting the global threshold for
weight using the mean or median of weights of all
windows in the image. In case of the mean of
weights, the threshold for weight is computed as
W,=f. W Where f is ia the range of 0.5 and 1.5.
For the median of weght, the threshold for weight
is detdermined by w,=c - w,.,, Where c ranges
from 3 to 5. The two constants f and ¢ had been
derived from the previous experiments [Forstner
and Gillch 1987].

The circular error ellipse (roundness of error el-
lipse) ensures that the selected optimal window
does not contain strong edge points and strongly
oriented texture, but that the point determination is
equally precise in all directions. The roundness
parameter ¢ should satisfy the condition:

4> Gus 2.14)
The threshold for roundness parameter .. can be
determined by equaticn (2.12) using the eigen-
values of the normal cquation matrix. The thres-
hold of roundness parameter determines the angle
of an interest corner point subtended by two or
more linear features. For example, when ¢, is
equal to 0.75, the corresponding ratio between two
semiaxes of the error ellipse is 24/3 and the the cor-
responding angle is approximately 80°. Previous ex-
periments [Forstner and Gulch 1987] show that the
ranger between 0.65 and 0.75 performs well to ob-
tain optimal windows with comer and circular fea-
ture points.

2.3 Optimal Window Classification

The optimal window classification decides

whether the slected window contains a corner
point or a circular feature. Since the edge element
model and slope element model are orthogonal to
each other, the ratio £/£'is Fisher distributed. The
test statistic is as follows:

T=8 ~Foanes 215)

where £ and £' are the weighted sum of squared
residuals for edge and slope element models respec-
tively, and m-2 is degree of freedom where m is
the number of edge and slope elements of optimal
windows. Considering all the optimal windows
that contain the edge points are excluded, a two-
sided test can be applied as follows:

1. If T<F,.; s o; then comer points.

2. If T>F,.; w2 1. then circular feature point.

2.4. Optimal point Determination

The optimal point determination aims at el-
iminating relative local maxima. After optimal win-
dow selection and optimal window classification,
in many cases the selected windows are close to
one another. Using a prespecified window size,
each selected optimal window is compared with its
neighboring selected windows in term of weights
w (2.11). If the weights of its neighboring selected
windows are larger than its own weight, the select-
ed window of interest is eliminated from the set of
optimal windows. This operation is called non-max-
ima suppression. The typical window sizes for non-
maxima suppression are 5X5 and 7X 7.

The location of interest corner point with sub-
pixel accuracy is determined by solving the e-
quation (2.4) with the optimal windows after non-
maxima suppression. Figure 2 with synthetic test
patterns shows examples of corner points at a 99%
confidence level. All comer points are detected
and well located except the one in the top corner
of the triangle in Figure 2(e). Since the g, is set
to 0.75, the operator does not select the corner be-
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Fig. 2. Interst corner points with 99% confidence
using 7X7 window for operator size, 5X5
window for non-maxima suppression, 0.75 for
g, and q.5 for fin W, =f- W,

cause two edges meet at an angle less than the
threshold angle.

As shown in Figure 2, the Forstner interest
operator performs well in locating the corner
points especially at the area where the intensity of
gray values changes abruptly becasse the edge ele-
ment and slope element model interact well with
those areas. However, when the gradient dis-
tribution within the window is not symmetric
around the feature, the location of the feature
points is shifted. Figure 3 illustrates the case.

biased corner
point

I

Fig. 3. The bias introduced by interest operator to a
step edge where intensity slope is different.

The test image size is 40X 40 pixels and the
corner point is precisely in center. The intensity
slopes at either side of an ideal step edge are dif-
ferent in both row and column directions. This
asymmetrical distribution causes a shift; the lo-
cation of the corner point is at (19.95, 19.35). Heik-
kila provided the formula to compute the amount
of bias introduced if the slope of the intensity sur-
face at either side of an ideal step edge is different.

The performance of the Forstner interest opera-
tor is also influenced by the gradient operator
which computes the gradients in an image in the
first place. Since the interest operator is rotation in-
variant, the gradient operator should have the same

property.

2.5. Behavior in the Presence of Noise

As demonstrated in the previous section, the
Forstner interest operator is sensitive to asym-
metrical gradient distributions around features.
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Fig. 4. Interest comer point in synthetic test images

with random noise 0 = 5.

Here, its sensitivity to noise is examined.

Figure 4, 5, and 6 show eight synthetic images
containing random noise of varying degree. The
random noise levels (0=5, 10, and 20) are in-
troduced into the features and background separate-
ly. For the Forstner interest operator, the 7X 7 win-
dow for operator size, 5X5 window for non-max-
ima suppression, 99% confidence, 0.75 gor Qun,
and 1.5 for in w,=f.w,.,, are used for three dif-
ferent levels of noisy images.

As shown in Figures 4 through 6, the operator
fails to detect some corner points which are de-
tected in noise free images (see Figure 2). Moreov-

(b
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Fig. 5. Interest corner points in synthetic test with

random noise 0 = 10.

er, erroneous locations of comner points in images
with large random noises are produced. However,
the corner points made by two or more edges meet-
ing at right angles are always detected and located
mostly within a pixel of the true position even
though the random noise 6 is equal to 20. Up to
noise level 6=10, the interest operator is not much
influenced by noise with the exception of some
missing corner points corresponding to acute an-
gles.

Since the Forstner interest operator is a gradient
based operator, large random noise which gen-
erates considerable disturbances of gradient dis-
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Fig. 6. Interest comer points in synthetic test images

with random noise 0 = 20

tribution around features deteriorates the per-
formance of the interest operator. Under the noise,
the interest operator performs less accurately with
99% confidence especially at corner points with an
acute angle. This investigation shows that the
Forstner interest operator performs reliably and
robustly in noisy images.

3. Experiments and Results

Two images were used in this experiment. The
first image depicts the campus of The Ohio State
University at a scale of 1:4000. The diapositive
was scanned by the Intergraph Photoscan with a

ST G R o
Fig. 7. OSU image superimposed with interest corner
points with 99%

operator window size 7X7 non-maxima

confidence using 7X7

window size, q=0.75, and f=1.5.

resolution of 30um. An image pyramid was gen-
erated using a Gaussian kernel. An image with a
resolution 512X 512 pixels was used to extract in-
terest corner points. Figure 7 show the image su-
perimposed with comer points.

The second image is from the OEEPE test area
Forssa in Southern Finland. The scale is also ap-
proximately 1:4000. The image has been scanned
with a pixel size of 15 pum using a Zeiss PS1
scanner (see Figure 8). From the image pyramid
constructed by using the Gaussian function, the
lowest resolution (500x500) image was utilized
for the experment.

For corner point detection, the Forstner interest
operator requires two thresholds to be set: thres-
hold for weight (f) and threshold for roundness
measure (q). In this research, f=1.5 and ¢=0.75
were used. The comner points were detected at the
97% confidence level. A window size of 7X 7 pix-
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Fig. 8. Forssa image superimposed with interst corner
points with 99%
operator window size 7X7 non-maxima

confidence using 7X7

window size, q=0.75, and f=1.5.

els was used, also for nonmaxima suppression.
The 2X2 Robert gradient operator was em-

Table 1. The number of coner points detected by the
interest operator

Number of Detected Comer Points

OSuU 1413
Forssa 771

ployed to compute the gradient. It is important to
use an orientation-invariant gradient operator, be-
cause the Forstner interest operator is also orien-
tation-invariant. Several gradient operators were
tested and was found that the 2X 2 Robert operator
performs best with the Forstner interest operator.
The detected interest comner points after non-
maxima suppression are shown in Figure 7 and 8
by white dots. Most corner points are detected
well by the interest operator. However, a closer ex-
amination of the OSU campus image reveals that
some comer points remained undetected (labeled A
in Figure 7). Figure 9 shows the area of point A
enlarged together with the corresponding gradients.
Point A was not detected because the gradient dis-
tribution around the point is not symmetrical--a re-
quirement to pass the threshold criteria for the
roundness and strength (parameters q and w). For
the two images (OSU and Forssa), the number of
corner points detected by the Forstner interest
operator is listed in Table 1. As shown in Table 1,
the Forstner interest operator detects the corner
points enough for further process such as image

Fig. 9. Image patch and corresponding gradient image containing an undetected corner points caused by gradient

disturbance.
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matching problem.

4. Conclusion

This paper descibes the detailed desciption of
the Forstner interest operator and its im-
plementation with real images. As shown, the
Forstner interest operator interacts well with phy-
sical features and locates the comer points with
subpixel accuracy. However, it was found that the
Forstner interest operator performs poorly when
the gradient distribution around the features is not
symmetrical. This problem can be diminished by
convolving the orginal image with smoothing func-
tion such as Gaussian function.

Next paper will present the scale space property
of the Forstner interest operator and the com-
bination of point feature and linear feature ex-

traction for a high level feature desciption.
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