• Title/Summary/Keyword: interaction parameters

Search Result 1,465, Processing Time 0.023 seconds

Verification of Numerical Technique for Hydraulic Fracturing Stimulation - by Comparison with Analytical Solutions - (수압파쇄 설계를 위한 수치해석기법의 증명 -해석식과의 비교를 중심으로 -)

  • Sim, Young-Jong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.4
    • /
    • pp.65-71
    • /
    • 2009
  • Hydraulic fracturing technology has been widely applied in the industry for the recovery of the natural resources such as gas, oil and geothermal heat from hot dry rock. During hydraulic fracturing stimulation, multiple cracks are created resulting in mechanical interaction between cracks. Such an interaction influences obtaining hydraulic fracturing key parameters (crack opening, length, and borehole net pressure). The boundary collocation method (BCM) has been proved to be very effective in considering mechanical interaction. However, for better confidence, it needs to be verified by comparison with analytical solutions such as stress intensity factors. In this paper, three cases, single fracture in remote uniaxial tension, single fracture in remote shear stress field and two arbitrary segments in an infinite plane loaded at infinity are considered. As a result, the BCM is proved to be valid technique to consider mechanical interaction between cracks and can be used to estimate the hydraulic fracturing parameters such as opening of the fracture, and so on.

  • PDF

Site specific fragility modification factor for mid-rise RC buildings based on plastic energy dissipation

  • Merin Mathews;B.R. Jayalekshmi;Katta Venkataramana
    • Earthquakes and Structures
    • /
    • v.27 no.4
    • /
    • pp.331-344
    • /
    • 2024
  • The performance of reinforced concrete buildings subjected to earthquake excitations depends on the structural behaviour of the superstructure as well as the type of foundation and the properties of soil on which the structure is founded. The consideration of the effects due to the interaction between the structure and soil- foundation alters the seismic response of reinforced concrete buildings subjected to earthquake motion. Evaluation of the structural response of buildings for quantitative assessment of the seismic fragility has been a demanding problem for the engineers. Present research deals with development of fragility curve for building specific vulnerability assessment based on different damage parameters considering the effect of soil-structure interaction. Incremental Dynamic Analysis of fixed base and flexible base RC building models founded on different soil conditions was conducted using finite element software. Three sets of fragility curves were developed with maximum roof displacement, inter storey drift and plastic energy dissipated as engineering demand parameters. The results indicated an increase in the likelihood of exceeding various damage limits by 10-40% for flexible base condition with soft soil profiles. Fragility curve based on energy dissipated showed a higher probability of exceedance for collapse prevention damage limit whereas for lower damage states, conventional methods showed higher probability of exceedance. With plastic energy dissipated as engineering demand parameter, it is possible to track down the intensity of earthquake at which the plastic deformation starts, thereby providing an accurate vulnerability assessment of the structure. Fragility modification factors that enable the transformation of existing fragility curves to account for Soil-Structure Interaction effects based on different damage measures are proposed for different soil conditions to facilitate a congenial vulnerability assessment for buildings with flexible base conditions.

Spectroscopic Studies on the Mechanism of Interaction of Vitamin $B_{12}$ with Bovine Serum Albumin

  • Kamat, B.P.;Seetharamappa, J.
    • Journal of Photoscience
    • /
    • v.11 no.1
    • /
    • pp.29-33
    • /
    • 2004
  • The mechanism of interaction of cyanocobalamin (CB) with bovine serum albumin (BSA) has been investigated by spectrofluorometric and circular dichroism methods. Association constant for the CB-BSA system showed that the interaction is non-covalent in nature. Binding studies in the presence of an hydrophobic probe, 8-anilino-l-naphthalene sulphonic acid, sodium salt (ANS) showed that there is hydrophobic interaction between CB and ANS and they do not share common sites in BSA. Stern-Volmer analysis of fluorescence quenching data showed that the fraction of fluorophore (protein) accessible to the quencher (CB) was close to unity indicating thereby that both tryptophan residues of BSA are involved in drug-protein interaction. The rate constant for quenching, greater than $10^{10}$ $M^{-1}$ $s^{-1}$, indicated that the drug binding site is in close proximity to tryptophan residue of BSA. Thermodynamic parameters obtained from data at different temperatures showed that the binding of CB to BSA involves hydrophobic bonds predominantly. Significant increase in concentration of free drug was observed for CB in presence of paracetamol. Circular dichroism studies revealed the change in helicity of BSA due to binding of CB to BSA.

  • PDF

Influence of partial accommodation coefficients on the aerodynamic parameters of an airfoil in hypersonic, rarefied flow

  • Zuppardi, Gennaro
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.4
    • /
    • pp.427-443
    • /
    • 2015
  • The present paper is the follow-on of a former work in which the influence of the gas-surface interaction models was evaluated on the aerodynamic coefficients of an aero-space-plane and on a section of its wing. The models by Maxwell and by Cercignani-Lampis-Lord were compared by means of Direct Simulation Monte Carlo (DSMC) codes. In that paper the diffusive, fully accommodated, semi-specular and specular accommodation coefficients were considered. The results pointed out that the influence of the interaction models, considering the above mentioned accommodation coefficients, is pretty strong while the Cercignani-Lampis-Lord and the Maxwell models are practically equivalent. In the present paper, the comparison of the same models is carried out considering the dependence of the accommodation coefficients on the angle of incidence (or partial accommodation coefficients). More specifically, the normal and the tangential momentum partial accommodation coefficients, obtained experimentally by Knetchel and Pitts, have been implemented. Computer tests on a NACA-0012 airfoil have been carried out by the DSMC code DS2V-64 bits. The airfoil, of 2 m chord, has been tested both in clean and flapped configurations. The simulated conditions were those at an altitude of 100 km where the airfoil is in transitional regime. The results confirmed that the two interaction models are practically equivalent and verified that the use of the Knetchel and Pitts coefficients involves results very close to those computed considering a diffusive, fully accommodated interaction both in clean and flapped configurations.

Partial Miscibility of Binary Solution with Specific Interaction of Binomial Distribution (이항분포의 특정 상호작용을 갖는 이성분 용액에서의 부분혼합도)

  • Jung, Hae-Young
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.6
    • /
    • pp.528-534
    • /
    • 2014
  • In some binary solution, closed miscibility loop of temperature-composition phase diagram occurs where both an upper critical solution temperature and a lower critical solution temperature exist. It is known that this phenomena occurs if specific interaction between molecules exists. There are several ways describing the specific interaction. In this work it is assumed that the total number of specific interactions is distributed according to binomial distribution. In this case, exact mathematical conditions for closed miscibility loop phase behavior are derived when the specific interaction is applied to regular solution theory, quasichemical theory and Flory-Huggins lattice theory. And we investigated the effect of parameters on the phase diagram. The phase diagram of water-nicotine is calculated and compared with experimental data.

Parametric Study on the P-M Interaction Diagram of Hollow Prestressed Concrete Bridge Columns (중공 프리스트레스트 콘크리트 교각의 P-M 상관도 매개변수 분석)

  • Kim, Tae-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.1-10
    • /
    • 2011
  • This study presents the results of parametric studies of the P-M interaction diagram of hollow prestressed concrete bridge columns. Among the numerous parameters, this study concentrates on concrete compressive strength, prestressing steel reinforcement ratio, effective prestress, the Ds/Do ratio, and the Di/Do ratio. The strength and ductility of hollow prestressed concrete bridge columns were evaluated through quasistatic tests. The P-M interaction diagrams from the codes were different from that of the results, which were in good agreement with AASHTO-LRFD. Nondimensionalized P-M interaction diagrams were developed to predict the design resistance of hollow prestressed concrete bridge columns.

Effect of raft and pile stiffness on seismic response of soil-piled raft-structure system

  • Saha, Rajib;Dutta, Sekhar C.;Haldar, Sumanta
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.161-189
    • /
    • 2015
  • Soil-pile raft-structure interaction is recognized as a significant phenomenon which influences the seismic behaviour of structures. Soil structure interaction (SSI) has been extensively used to analyze the response of superstructure and piled raft through various modelling and analysis techniques. Major drawback of previous study is that overall interaction among entire soil-pile raft-superstructure system considering highlighting the change in design forces of various components in structure has not been explicitly addressed. A recent study addressed this issue in a broad sense, exhibiting the possibility of increase in pile shear due to SSI. However, in this context, relative stiffness of raft and that of pile with respect to soil and length of pile plays an important role in regulating this effect. In this paper, effect of relative stiffness of piled raft and soil along with other parameters is studied using a simplified model incorporating pile-soil raft and superstructure interaction in very soft, soft and moderately stiff soil. It is observed that pile head shear may significantly increase if the relative stiffness of raft and pile increases and furthermore stiffer pile group has a stronger effect. Outcome of this study may provide insight towards the rational seismic design of piles.

Robust adaptive controller design for robot manipulator (로보트 매니퓰레이터에 대한 강건한 적응제어기 설계)

  • 안수관;배준경;박종국;박세승
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.177-182
    • /
    • 1989
  • In this paper a new adaptive control algorithm is derived, with the unknown manipulator and payload parameters being estimated online. In practice, we may simplify the algorithm by not explicity estimating all unknown parameters. Further, the controller must be robust to residual time-varying disturbance, such as striction or torque ripple. Also, the reference model is a simple douple integrator and the acceleration input for robot manipulator consists of a proportion and derivative controller for trajectory tracking purposes. The validity of this control is confirmed in simulation where two-link robot manipulator shows the robust performances in spite of the existing nonlinear interaction and unknown parametrictings

  • PDF

Characteristics of the major tribological parameters in boundary lubrication (경계윤활에서의 주요 Tribological 인자의 특성)

  • 류종관;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.82-90
    • /
    • 1998
  • Machines that normally operate under fluid film lubricated condition also experience surface damage. This is largely due to the failure of the lubricant film which leads to boundary lubrication. Thus, it is important to have a good understanding of boundary lubrication behavior. In this paper the major tribological parameters that influence the boundary lubrication properties are evaluated. It is shown that disk roughness, hardness and normal load affect the friction and wear of metals in boundary lubrication. Also, the mechanism of surface damage is attributed to abrasion and wear particle interaction.

  • PDF

A Study on the Adhesive Characteristics of Nano Scale Particles Considering Asperity Interaction (거칠기 돌기의 상호작용을 고려한 미세입자의 응착특성에 관한 연구)

  • Lee, Chang-Hun;Lee, Kyong-Hun;Yoon, Jun-Ho;Shin, Young-Eui
    • Journal of Welding and Joining
    • /
    • v.26 no.1
    • /
    • pp.56-62
    • /
    • 2008
  • In this paper, elastic and plastic adhesion index was very important in deciding adhesive characteristics and varying elastic and plastic index, dimensionless load and pull-off force were analyzed and simulated. Finally, using AFM, experimental surface roughness parameters of substrates and pull-off force between tip and substrates were produced. Using these values, pull-off forces were calculated and were compared with experimental pull-off forces. Through simulation and experiment, it was found that interaction of asperity also had very important influence on adhesive contact.