• Title/Summary/Keyword: interaction integral

Search Result 170, Processing Time 0.028 seconds

The Effect of the Configuration Interaction on 10Dq in a Point Charge Model (점전하 모형에 의한 10Dq 에서의 배치간 작용의 영향)

  • Hojing Kim;Duckhwan Lee
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.1
    • /
    • pp.23-31
    • /
    • 1977
  • For the metal complex of $d^1$ configuration with the octahedrally coordinated ligands, the crystal field parameter, 10Dq, is calculated from first principles within the framework of the crystal field theory. With the point charge model, the configuration interaction is introduced by use of the Shull-L$\"{o}$wdin functions. Through the Integral Hellmann-Feynman Theorem, the higher order effect is visualized. It is found that the higher order effect on 10Dq is about $50{\%}$ of the first order effect. Since 3d function is angularly undistorted and radially equally distorted in $E_g\;and\;T_{2g}$ states, due to the octahedral potential, the calculated 10Dq is still the unique parameter for the splitting.

  • PDF

A Study on Evaluating the Ability of the Competitive Container Ports in Far-East Asia (극동 아세아 컨테이너 항만의 능력평가에 관한 연구)

  • Lee S.T.;Lee C.Y.
    • Journal of Korean Port Research
    • /
    • v.7 no.1
    • /
    • pp.13-24
    • /
    • 1993
  • The rapid progress of the intermodal freight transportation in recent years has induced fierce competition among the adjacent hub ports for container transport. This brings increased attention to the evaluation of the port competitive ability. But it is not easy to evaluate the port competitive ability because this belongs to ill-defined system which is composed of ambiguous interacting attributes. Paying attention to this point, this paper deals the competitive ability of container port in Far-East Asia by fuzzy integral evaluation which is adequate to interacting ambiguous attribute problem. For this, the proposed fuzzy evaluation algorithm is applied to the real problem, based on the factors such as cargo volumes, costs, services, infrastructure and geographical sites These are extracted from the precedent study of port competitive ability, etc. The results show that the port evaluation factors come in following order ; services, costs, infrastructure, geographical sites and cargo volumes. There are some interactions(interaction coefficient, ${\lambda}=-0.664$ between evaluation attributes. The port competitive ability comes in following order : Singapore, Hongkong, Kobe, Kaoshiung and Busan. According to the sensitivity analysis, the rank between Busan and Kaoshiung changes when ${\lambda}=0.7$. From the analysis of the results, we confirmed that the proposed fuzzy evaluation algorithm is very effective in the complex-fuzzy problem which is composed of hierarchical structure with interacting attributes.

  • PDF

An IE-FFT Algorithm to Analyze PEC Objects for MFIE Formulation

  • Seo, Seung Mo
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.1
    • /
    • pp.6-12
    • /
    • 2019
  • An IE-FFT algorithm is implemented and applied to the electromagnetic (EM) solution of perfect electric conducting (PEC) scattering problems. The solution of the method of moments (MoM), based on the magnetic field integral equation (MFIE), is obtained for PEC objects with closed surfaces. The IE-FFT algorithm uses a uniform Cartesian grid to apply a global fast Fourier transform (FFT), which leads to significantly reduce memory requirement and speed up CPU with an iterative solver. The IE-FFT algorithm utilizes two discretizations, one for the unknown induced surface current on the planar triangular patches of 3D arbitrary geometries and the other on a uniform Cartesian grid for interpolating the free-space Green's function. The uniform interpolation of the Green's functions allows for a global FFT for far-field interaction terms, and the near-field interaction terms should be adequately corrected. A 3D block-Toeplitz structure for the Lagrangian interpolation of the Green's function is proposed. The MFIE formulation with the IE-FFT algorithm, without the help of a preconditioner, is converged in certain iterations with a generalized minimal residual (GMRES) method. The complexity of the IE-FFT is found to be approximately $O(N^{1.5})$and $O(N^{1.5}logN)$ for memory requirements and CPU time, respectively.

A full path assessment approach for vibration serviceability and vibration control of footbridges

  • Zhu, Qiankun;Hui, Xiaoli;Du, Yongfeng;Zhang, Qiong
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.765-779
    • /
    • 2019
  • Most of the existing evaluation criteria of vibration serviceability rely on the peak acceleration of the structure rather than that of the people keeping their own body unmoved on the structure who is the real receiver of structural vibrations. In order to accurately assess the vibration serviceability, therefore, a full path assessment approach of vibration serviceability based on vibration source, path and receiver is not only tentatively proposed in this paper, taking the peak acceleration of receiver into account, but also introduce a probability procedure to provide more instructive information instead of a single value. In fact, semi-rigid supported on both sides of the structure is more consistent with the actual situation than simply supported or clamped due to the application of the prefabricated footbridge structures. So, the footbridge is regarded as a beam with semi-rigid supported on both sides in this paper. The differential quadrature-integral quadrature coupled method is not only to handle different type of boundary conditions, but also after being further modified via the introduction of an approximation procedure in this work, the time-varying system problem caused by human-structure interaction can be solved well. The analytical results of numerical simulations demonstrate that the modified differential quadrature-integral quadrature coupled method has higher reliability and accuracy compared with the mode superposition method. What's more, both of the two different passive control measures, the tuned mass damper and semi-rigid supported, have good performance for reducing vibrations. Most importantly, semi-rigid supported is easier to achieve the objective of reducing vibration compared with tuned mass damper in design stage of structure.

Hydroelastic vibration analysis of wetted thin-walled structures by coupled FE-BE-Procedure

  • Rohr, Udo;Moller, Peter
    • Structural Engineering and Mechanics
    • /
    • v.12 no.1
    • /
    • pp.101-118
    • /
    • 2001
  • The reliable prediction of elastic vibrations of wetted complex structures, as ships, tanks, offshore structures, propulsion components etc. represent a theoretical and numerical demanding task due to fluid-structure interaction. The paper presented is addressed to the vibration analysis by a combined FE-BE-procedure based on the added mass concept utilizing a direct boundary integral formulation of the potential fluid problem in interior and exterior domains. The discretization is realized by boundary element collocation method using conventional as well as infinite boundary element formulation with analytical integration scheme. Particular attention is devoted to modelling of interior problems with both several separate or communicating fluid domains as well as thin-walled structures wetted on both sides. To deal with this specific kind of interaction problems so-called "virtual" boundary elements in areas of cut outs are placed to satisfy the kinematical conditions in partial connected fluid domains existing in realistic tank systems. Numerical results of various theoretical and practical examples demonstrate the performance of the BE-methodology presented.

Soil-Structure Interaction Analysis in the Time Domain Using Explicit Frequency-Dependent Two Dimensional Infinite Elements (명시적 주파수종속 2차원 무한요소를 사용한 지반-구조물 상호작용의 시간영역해석)

  • 윤정방;김두기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.42-49
    • /
    • 1997
  • In this paper, the method for soil-structure interaction analyses in the time domain is proposed. The far field soil region which is the outside of the artificial boundary is modeled by using explicit frequency-dependent two dimensional infinite elements which can include multiple wave components propagating into the unbounded medium. Since the dynamic stiffness matrix of the far field soil region using the proposed infinite elements is obtained explicitly in terms of exciting frequencies and constants in the frequency domain, the matrix can be easily transformed into the displacement unit-impulse response matrix, which corresponds to a convolution integral of it in the time domain. To verify the proposed method for soil-structure interaction analyses in the time domain, the displacement responses due to an impulse load on the surface of a soil layer with the rigid bed rock are compared with those obtained by the method in the frequency domain and those by models with extend finite element meshes. Good agreements have been found between them.

  • PDF

Nonlinear interaction analysis of infilled frame-foundation beam-homogeneous soil system

  • Hora, M.S.
    • Coupled systems mechanics
    • /
    • v.3 no.3
    • /
    • pp.267-289
    • /
    • 2014
  • A proper physical modeling of infilled building frame-foundation beam-soil mass interaction system is needed to predict more realistic and accurate structural behavior under static vertical loading. This is achieved via finite element method considering the superstructure, foundation and soil mass as a single integral compatible structural unit. The physical modelling is achieved via use of finite element method, which requires the use of variety of isoparametric elements with different degrees of freedom. The unbounded domain of the soil mass has been discretized with coupled finite-infinite elements to achieve computational economy. The nonlinearity of soil mass plays an important role in the redistribution of forces in the superstructure. The nonlinear behaviour of the soil mass is modeled using hyperbolic model. The incremental-iterative nonlinear solution algorithm has been adopted for carrying out the nonlinear elastic interaction analysis of a two-bay two-storey infilled building frame. The frame and the infill have been considered to behave in linear elastic manner, whereas the subsoil in nonlinear elastic manner. In this paper, the computational methodology adopted for nonlinear soil-structure interaction analysis of infilled frame-foundation-soil system has been presented.

Interaction-based Collaborative Recommendation: A Personalized Learning Environment (PLE) Perspective

  • Ali, Syed Mubarak;Ghani, Imran;Latiff, Muhammad Shafie Abd
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.446-465
    • /
    • 2015
  • In this modern era of technology and information, e-learning approach has become an integral part of teaching and learning using modern technologies. There are different variations or classification of e-learning approaches. One of notable approaches is Personal Learning Environment (PLE). In a PLE system, the contents are presented to the user in a personalized manner (according to the user's needs and wants). The problem arises when a new user enters the system, and due to the lack of information about the new user's needs and wants, the system fails to recommend him/her the personalized e-learning contents accurately. This phenomenon is known as cold-start problem. In order to address this issue, existing researches propose different approaches for recommendation such as preference profile, user ratings and tagging recommendations. In this research paper, the implementation of a novel interaction-based approach is presented. The interaction-based approach improves the recommendation accuracy for the new-user cold-start problem by integrating preferences profile and tagging recommendation and utilizing the interaction among users and system. This research work takes leverage of the interaction of a new user with the PLE system and generates recommendation for the new user, both implicitly and explicitly, thus solving new-user cold-start problem. The result shows the improvement of 31.57% in Precision, 18.29% in Recall and 8.8% in F1-measure.

A Simplified Numerical Model for an Integral Abutment Bridge Considering the Restraining Effects Due to Backfill

  • Hong, Jung-Hee;Jung, Jae-Ho;You, Sung-Kun;Yoon, Soon-Jong
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.759-767
    • /
    • 2003
  • This paper presents the simplified but more rational analysis method for the prediction of additional internal forces induced in integral abutment bridges. These internal forces depend upon the degree of restraint provided tc the deck by the backfill soil adjacent to the abutments and piles. In addition, effect of the relative flexural stiffness ratio among pile foundations, abutment, and superstructure on the structural behavior is also an important factor. The first part of the paper develops the stiffness matrices, written in terms of the soil stiffness, for the lateral and rotational restraints provided by the backfill soil adjacent to the abutment. The finite difference analysis is conducted and it is confirmed that the results are agreed well with the predictions obtained by the proposed method. The simplified spring model is used in the parametric study on the behavior of simple span and multi-span continuous integral abutment PSC beam bridges in which the abutment height and the flexural rigidity of piles are varied. These results are compared with those obtained by loading Rankine passive earth pressure according to the conventional method. From the results of parametric study, it was shown that the abutment height, the relative flexural rigidity of superstructure and piles, and the earth pressure induced by temperature change greatly affect the overall structural response of the bridge system. It may be possible to obtain more rational and economical designs for integral abutment bridges by the proposed method.

Long-term Behavior of Earth Pressure on Integral Abutments (일체식 교대의 장기토압 거동)

  • Nam, Moon-S.;Park, Young-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.47-58
    • /
    • 2007
  • The usage of Integral abutment bridges has been increased worldwide because of reducing bridge maintenance costs and resisting seismic loads. Although these attributes make the integral abutment bridge an increasingly popular choice, back-abutment interaction issues remain unresolved. Hence, the earth pressure behavior of an integral abutment bridge having 90 m long PSC beam bridge for the first time in Korea was analyzed by conducting long term monitoring in this study. Based on this study, the results were as follows; the ratio of maximum passive movement to the abutment height (H) of 0.0027 and the maximum passive earth pressure coefficient of 4.8 were developed at 0.82H from the bottom of the abutment during summer season. During winter season, the ratio of maximum active movement to H of 0.0011 and the maximum active earth pressure coefficient of 0.7 were developed at the same location as in summer season. The new earth pressure distributions having a trapezoid type were proposed based on this study.