• Title/Summary/Keyword: interacting multiple model method

Search Result 61, Processing Time 0.036 seconds

A EM-Log Aided Navigation Filter Design for Maritime Environment (해상환경용 EM-Log 보정항법 필터 설계)

  • Jo, Minsu
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.3
    • /
    • pp.198-204
    • /
    • 2020
  • This paper designs a electromagnetic-log (EM-Log) aided navigation filter for maritime environment without global navigation satellite system (GNSS). When navigation is performed for a long time, Inertial navigation system (INS)'s error gradually diverges. Therefore, an integrated navigation method is used to solve this problem. EM-Log sensor measures the velocity of the vehicle. However, since the measured velocity from EM-Log contains the speed of the sea current, the aided navigation filter is required to estimate the sea current. This paper proposes a single model filter and interacting multiple (IMM) model filter methods to estimate the sea current and analyzes the influence of the sea current model on the filter. The performance of the designed aided navigation filter is verified using a simulation and the improvement rate of the filter compared to the pure navigation is analyzed. The performance of single model filter is improved when the sea current model is correct. However, when the sea current model is incorrect, the performance decreases. On the other hands, IMM model filter methods show the stable performance compared to the single model.

A DNA Coding-Based Intelligent Kalman Filter for Tracking a Maneuvering Target (기동표적 추적을 위한 DNA 코딩 기반 지능형 칼만 필터)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.131-136
    • /
    • 2003
  • The problem of maneuvering target tracking has been studied in the field of the state estimation over decades. The Kalman filter has been widely used to estimate the states of the target, but in the presence of a maneuver, its performance may be seriously degraded. In this paper, to solve this problem and track a maneuvering target effectively, DNA coding-based intelligent Kalman filter (DNA coding-based IKF) is proposed. The proposed method can overcome the mathematical limits of conventional methods and can effectively track a maneuvering target with only one filter by using the fuzzy logic based on DNA coding method. The tracking performance of the proposed method is compared with those of the adaptive interacting multiple model (AIMM) method and the GA-based IKF in computer simulations.

IMM-Based Interference Prediction and Power Control for Broadband Wireless Packet Networks (광대역 무선 패킷 통신망에서의 IMM 알고리듬을 이용한 간섭예측 및 전력제어)

  • 정영헌;홍순목
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.251-254
    • /
    • 2003
  • In this paper, we develop an effective method for estimating and predicting interference power strength using the IMM(Interacting Multiple Model) algorithm. Based on the proposed interference prediction algorithm, we adjust transmission power of mobile terminals to maintain a certain level of target signal - to - interference- plus -noise- ratio ( SINR ) at the base station. Results of numerical experiments are presented to show a performance profile of the proposed algorithm.

  • PDF

Motivation based Behavior Sequence Learning for an Autonomous Agent in Virtual Reality

  • Song, Wei;Cho, Kyung-Eun;Um, Ky-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.12
    • /
    • pp.1819-1826
    • /
    • 2009
  • To enhance the automatic performance of existing predicting and planning algorithms that require a predefined probability of the states' transition, this paper proposes a multiple sequence generation system. When interacting with unknown environments, a virtual agent needs to decide which action or action order can result in a good state and determine the transition probability based on the current state and the action taken. We describe a sequential behavior generation method motivated from the change in the agent's state in order to help the virtual agent learn how to adapt to unknown environments. In a sequence learning process, the sensed states are grouped by a set of proposed motivation filters in order to reduce the learning computation of the large state space. In order to accomplish a goal with a high payoff, the learning agent makes a decision based on the observation of states' transitions. The proposed multiple sequence behaviors generation system increases the complexity and heightens the automatic planning of the virtual agent for interacting with the dynamic unknown environment. This model was tested in a virtual library to elucidate the process of the system.

  • PDF

Major SNP Marker Identification with MDR and CART Application

  • Lee, Jea-Young;Choi, Yu-Mi
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.2
    • /
    • pp.265-271
    • /
    • 2008
  • It is commonly believed that diseases of human or economic traits of livestock are caused not by single genes acting alone, but multiple genes interacting with one another. This issue is difficult due to the limitations of parametric-statistic methods of gene effects. So we introduce multifactor-dimensionality reduction(MDR) as a methods for reducing the dimensionality of multilocus information. The MDR method is nonparametric (i. e., no hypothesis about the value of a statistical parameter is made), model free (i. e., it assumes no particular inheritance model) and is directly applicable to case-control studies. Application of the MDR method revealed the best model with an interaction effect between the SNPs, SNP1 and SNP3, while only one main effect of SNP1 was statistically significant for LMA (p < 0.01) under a general linear mixed model.

Protein Interaction Possibility Ranking Method based on Domain Combination (도메인 조합 기반 단백질 상호작용 가능성 순위 부여 기법)

  • Han Dong-Soo;Kim Hong-Song;Jong Woo-Hyuk;Lee Sung-Doke
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.5
    • /
    • pp.427-435
    • /
    • 2005
  • With the accumulation of protein and its related data on the Internet, many domain based computational techniques to predict protein interactions have been developed. However, most of the techniques still have many limitations to be used in real fields. They usually suffer from a low accuracy problem in prediction and do not provide any interaction possibility ranking method for multiple protein pairs. In this paper, we reevaluate a domain combination based protein interaction prediction method and develop an interaction possibility ranking method for multiple protein pairs. Probability equations are devised and proposed in the framework of domain combination based protein interaction prediction method. Using the ranking method, one can discern which protein pair is more probable to interact with each other than other protein pairs in multiple protein pairs. In the validation of the ranking method, we revealed that there exist some correlations between the interacting probability and the precision of the prediction in case of the protein pair group having the matching PIP(Primary Interaction Probability) values in the interacting or non interacting PIP distributions.

Fault Detection and Diagnosis of Dynamic Systems with Colored Measurement Noise (유색측정잡음을 갖는 동적 시스템의 고장검출 및 진단)

  • Kim, Bong-Seok;Kim, Kyung-Youn
    • Journal of IKEEE
    • /
    • v.6 no.1 s.10
    • /
    • pp.102-110
    • /
    • 2002
  • An effective scheme to detect and diagnose multiple failures in a dynamic system is described for the case where the measurement noise is correlated sequentially in time. It is based on the modified interacting multiple model (MIMM) estimation algorithm in which a generalized decorrelation process is developed by employing the autoregressive (AR) model for the colored noise and applying measurement difference method.

  • PDF

A Fuzzy-Neural network based IMM method for Tracking a Maneuvering Target (기동표적 추적을 위한 퍼지 뉴럴 네트워크 기반 다중모델 기법)

  • Son, Hyun-Seung;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1858-1859
    • /
    • 2006
  • This paper presents a new fuzzy-neural-network based interacting multiple model (FNNBIMM) algorithm for tracking a maneuvering target. To effectively handle the unknown target acceleration, this paper regards it as additional noise, time-varying variance to target model. Each sub model characterized by the variance of the overall process noise, which is obtained on the basis of each acceleration interval. Since it is hard to approximate this time-varying variance adaptively owing to the unknown acceleration, the FNN is utilized to precisely approximate this time-varying variance. The gradient descendant method is utilized to optimize each FNN. To show the feasibility of the proposed algorithm, a numerical example is provided.

  • PDF

DNA Coding-Based Intelligent Kalman Filter for Tracking a Maneuvering Target (기동표적 추적을 위한 DNA 코딩 기반 지능형 칼만 필터)

  • 이범직;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.118-121
    • /
    • 2002
  • The problem of maneuvering target tracking has been studied in the field of the state estimation over decades. The Kalman filter has been widely used to estimate the state of the target, but in the presence of a maneuver, its performance may be seliously degraded. In this paper, to solve this problem and track a maneuvering target effectively, DNA coding-based intelligent Kalman filter (DNA coding-based IKF) is proposed. The proposed method can overcome the mathematical limits of conventional methods and can effectively track a maneuvering target with only one filter by using the fuzzy logic based on DNA coding method. The tracking performance of the proposed method is compared with those of the adaptive interacting multiple model (AIMM) method and the GA-based IKF in computer simulations.

Intelligent Tracking Algorithm for Maneuvering Target (지능형 추적 알고리즘)

  • Noh, Sun-Young;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.499-501
    • /
    • 2005
  • When the target maneuver occurs, the estimate of the standard Kalman filter is biased and its performance may be seriously degraded. To solve this problem, this paper proposes a new intelligent estimation algorithm for a maneuvering target. This algorithm is to estimate the unknown target maneuver by a fuzzy system using the relation between the filter residual and its variation. The detected acceleration input is regarded as an additive process noise. To optimize the employed fuzzy system, the genetic algorithm (GA) is utilized. And then, the modified filter is corrected by the new update equation method using the fuzzy system. The tracking performance of the proposed method is compared with those of an interacting multiple model (IMM).

  • PDF