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Fault Detection and Diagnosis of Dynamic Systems with

Colored Measurement Noise
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Abstract
An effective scheme to detect and diagnose multiple failures in a dynamic system is described for the case where
the measurement noise is correlated sequentially in time. It is based on the modified interacting multiple model
(MIMM) estimation algorithm in which a generalized decorrelation process is developed by employing the autoregressive

(AR) model for the colored noise and applying measurement difference method.
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L. Introduction Over the past two decades, fault detection and

i i hni h i
Modern dynamic systems are becoming more and diagnosis (FDD) techniques have received much

_— . attention from both theoretical and practical point
more sophisticated. Consequently, there is a © P ponts

growing demand for their reliability and security. of view. Many schemes have been developed in the

To assure the reliability and security of the system, literature for the FDD of dynamic systems [1-5, 8].

it is essential to rapidly and reliably detect and In general, the FDD techniques developed so far

. . may be classified into two categories: The one is
isolate its sensor, actuator, or system component

. the model-based approach which makes use of a
failures.

mathematical model of the system or of parts of it,

and the other is the knowledge-based approach
* BHRER BREFIEE
(Dept. of Electrical and Electronic Engineering,
Cheju National University) available [4-6].
e 0:20024F SHA31A, EIEET H:2002E7H 18H

where the analytical model of the system is not

(102)



Fault Detection and Diagnosis of Dynamic Systems with Colored Measurement Noise

More recently, the promising model-based FDD
approaches have been developed based on the use
of multiple models (MMs) for the dynamic systems
[7-11]. It runs a bank of the Kalman-type filters in
parallel, each based on a model matching to a
particular mode of the system. Among the MM
based FDD approaches, the interacting multiple
model (IMM) based FDD approach [12-14] is
known as one of the most cost-effective (in terms
of performance versus complexity) techniques for
the system involving structural well

as as

parametric changes. The IMM algorithm is a

recursive estimator and consists of a bank of

Kalman filter running in parallel, a model

probability evaluator, an estimate mixer at the

input of each Kalman filter, and an estimate
combiner at the outputs of the filters.

The performance of the FDD technique heavily
depends on the accuracy of the measurement

sensors. Quite often in real situations, the
measurement error is correlated sequentially in time
and hence the performance of the FDD techniques
developed on the assumption of the white Gaussian
measurement noise is degraded in the colored noise
environment.

In this paper, we describe a cost-effective FDD
algorithm based on the modified IMM (MIMM)
approach for the case where the measurement noise
is correlated sequentially in time. In doing so, the
generalized decorrelation process is developed to
decorrelate the high-order correlated measurement
noise based on the measurement difference method.
Numerical example for the nuclear steam generator
is provided to illustrate the performance of the

proposed FDD algorithm.
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H. Dynamic model and decorrelation process

2.1 Modeling of the dynamic systems

The IMM approach to FDD assumes that the
actual system at any time can be modeled
sufficiently accurately by a stochastic system. Let's
assume that a set of N dynamic models has been

set up to approximate the actual system as follows:
@

where x,€ R™ and u,= R"™ are the state and

Xp+1 = F/xk+ Gjuk+ TIWJ/;

input vector at time k, respectively and superscript

j denotes to

(/=12 N);

transition matrix, control input matrix and noise

quantities

F, G

pertaining model j

and T are the state

. . . Ny . . .
gain matrix, respectively; w, € R “is a discrete-time
process noise, which is assumed zero-mean white

Gaussian noise with known covariance such that

T
Hw,wi] = @Qéu 2
where &, is the Kronecker delta function, which is

equal to 1 if k= [, otherwise it is zero.

In addition, the measurement equation is

Zp = H’xk-l- 7/2

®
where z,& R™ is the measurement vector at time

k and H is the measurement matrix.
In the FDD algorithms developed so far, it has

been assumed that the measurement noise

v, € R™ have white Gaussian distributions.

However, in real situations, the measurement noise
is significantly correlated in time when the
measurement frequency is high. In this paper, it is
assumed that the correlated measurement noise can

be modeled as the nth-order Markov process such

that
Vp = Vg1 T Qpz o F U+ @)
where @; (1 =1,2,->-,m) is the correlation
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coefficient and 7, is zero-mean white Gaussian
noise with covariance
T
Elgn] = @)

And it is assumed that the process noise and the

R, 0u

measurement noise are mutually independent such

that

Elv,wl] = 0, V kand [ (6)

2.2 Generalized decorrelation process

Since it is irrelevant to use the correlated

measurement noise v, as it is in the Kalman-type

filter, it is necessary to decorrelate it. The

correlated measurement noise (4) can be rearranged

- Zoaiyk—i = T

ag= —1. To decorrelate the correlated

as:
)

where

noise, we define a mnew artificial (pseudo)

measurement based on the measurement

Ve

difference as follows:

Y = — ;Qaizk—i

%

®)

From the state model we can obtain the

following equation:

K- i=F ‘xp— ];)F_I(Gu/ﬁi—(ﬁl) + Twesj—i+1)

O
where ¢=1,2,--, n. Substituting egs. (3) and
(9) into eq. (8), the following generalized

decorrelation process can be obtained.

Hot 2BGu i+ v (10)

Ye =
where, H = H— B, (11
= D BiTwe + (12)
By = XaHF G 13)
=1

(104)
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The new measurement noise v, is white, but it is

also correlated with the process noise w,_;. In

most practical situations, the first-term of right-hand

side in (12) can be neglected with litile degradation
in performance since the covariance of v, is
dominated by the covariance of 7,. The covariance

of the artificial measurement noise can be obtained

as follows:
Ri= Fv, o'l = LBTQT'BI + R, = R,
(14)
In the next section, we describe the MIMM
based FDD scheme by using the generalized

decorrelation process.

III. The FDD scheme based on the MIMM
estimator

Basically, The FDD scheme based on the MIMM
(MIMM_FDD) can be obtained directly from the
IMM based FDD (IMM_FDD) scheme by including
the generalized decorrelation process. For more
details on the derivation of the IMM_FDD scheme,
see [12-14].

The MIMM_FDD scheme is a recursive algorithm.
In each cycle it consists of the following six major
steps:

1) model-conditional reinitialization (interaction or
mixing of the estimates), in which the input to the
filter matched to a certain mode is obtained by
mixing the estimates of all filters at the previous
time; 2) decorrelation of the correlated measurement
error; 3) model-conditioned filtering (bank of the
Kalman filter), performed in parallel for each mode;
4) based the
model-conditional 5)

based on the mode

mode probability update, on

likelihood functions;

determination of the fault
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probability measure, and 6) estimate combination,
which yields the overall state estimate as the
probabilistically weighted sum of the updated state
estimates of all filters.

Let the set of possible sensor and actuator

failures and the normal mode be modeled by a set

M= [mh mgy, ", my) (15)
where m, stands for the normal mode and
my, -+, my denote the possible fault modes.

Based on the above mode set, the MIMM_FDD
scheme can be depicted as Fig. 1.
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Fig. 1. Schematic diagram of the MIMM_FDD scheme.

One cycle of the MIMM_FDD algorithm can be

summarized as the following 6 steps:

1) Step 1: interaction (mixing) of the estimates

- predicted mode probability:

Hre = 23m50tk (16)

where 7 is transition probability from mode m;

to mode m; and #h is the probability for i-th

mode.
» mixing probability:

eV = mauhl e a7)

- mixing estimate:

(105)
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ADf AL ;
e =20 B sk (18)
- mixing covariance:
i i AQ ~i
e = Z,[Pzdk'f'( X g — %)
A0f N 24
( %p— %) 1ud (19)

2) Step 2: generalized decorrelation process in (10)
3) Step 3: model-conditional Kalman filtering

- time update

i

Do = F 2+ Gy (20)
P = FPRFYT+ TQ(TH" (@)
- measurement update
K;'H»l = Pﬁe-#l}k( —HJ)T(SQH)_l (22)
Af _ ~F ] ;
Xprtert = X prip T Khp1€hrt (23)

P;.e+1|k+1 = P5;+1|k_K2+152+1(K2+1)T (24
where,
i1 = o1 — (H Zpopp + BiGup) (25
Shi1 = ﬁjPLH\k( H) '+ R
4) Step 4: mode probability update

(26)

- likelihood function:

; 1 1,7 \NT/oi -1
Ly, = — ex| {——(e’ (Siv1) e }
k+1 2715 | p 9 1) b+ k+1
(27)
- mode probability:
Mor1 = /12+1|kL£+1/21#2+ukL2+1 (28)

5) Step 5: FDD logic

+ fault decision:

;  _ max = H : fault j occured.
/tfe+1 = i ﬂ;erl 2 — /
{ur =H : no fault
(29)
6) Step 6: combination of estimates
- overall estimate:
~ ~f ;
Xe+1le+1 = Zj X e tle+1 Lt (30
- overall covariance:
; ~ Aj
Piiypsr = zj[PfeﬂrkH HC Xprrrr — X prre)
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A ~j T ;
( Zprar1 = X priers) 1 (31)

IV. Numerical example

4.1 Indices for performance evaluation

In order to evaluate the FDD performance, the
following indices were used [12]: average
percentages of correct detection and identification
(CDID), incorrect fault identification (IFID), false
alarm (FA), and missed fault detection (MFD). A
CDID is obtained if the model that is closest to the
system mode (normal or fault mode) in effect at

the given time has a probability higher than the
specific threshold xr=0.9. An IFID is obtained if

the model with a probability over pr is not the

one closest to the fault mode in effect at the given

time. An FA 1is obtained if the model with a

probability over s is not the normal mode while

the normal mode is in effect at the given time. An

MFD is obtained if the normal model has the

highest probability which exceeds g, while the

system has a fault. It is obviously desirable to have

a higher CDID and lower FA, IFID, MFD.

4.2 Results for the numerical example

To evaluate the performance of the proposed
MIMM_FDD scheme for the colored measurement
noise environment, the simplified discrete-time
dynamic model for the nuclear steam generator
(SG) was used [15, 16]. In this model, the system

and control input matrices are as follows:

[0.45935 0.10107 0.0294}
F

If

0.37788 0.10037 0.0485
1.46789 0.64802 0.5573

[ 0.21232 0.00309 — 1.996}

G2

0.12898 0.00828 —5.335
0.26252

il

(33)

0.14042 —90.52

(106)

It is assumed for simplicity that all the state
components are directly measurable and thus the
measurement matrix H is an identity matrix and
the noise gain matrix T is also an identity matrix.

In this model, input variables consist of the
change in hot leg temperature, the change in
feedwater temperature, and the fractional change in
the main steam valve coefficient. Output variables
(sensing parameters) consist of the primary fluid
temperature the tube

sensor measurement,

temperature sensor measurement, and the steam
pressure sensor measurement in the 5G.

Actuator and sensor failures were modeled by
multiplying the respective column of the input gain
matrix G and the respective row of the
measurement matrix H, respectively by a factor
between zero and one, where zero corresponds to a
total (or complete) actuator (or sensor) failure and
one to a normal actuator (or sensor). It is assumed
that the damage does not affect the system matrix
F, implying that the dynamics of the system are
not changed.

The transition

following Markov probability

matrix was used for all cases:

0.96 0.02 0.02
0.05 0.% 0
0.06 0 0.9

In this simulation study, it is assumed that

T = (34)

the
the
the
the

correlated measurement noise is modeled as
first order AR process. The performance of

MIMM_FDD and IMM_FDD is compared for

different values of the correlation coefficient ¢,.

The covariance matrices for the process and

measurement noise are set to the following range:
Q@ = (0.005)°L; ~ (0.002)°I;,

R, = (0.02°L ~ (0.4)°L (35)
For all cases, it is assumed that there are three

possible modes, which consist of two failure modes
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and one normal mode and the sampling period
T=10.1s for all the simulations.
As for the faults, the following simple three cases

are considered:

1) Case 1: total sensor failure

In the true dynamic model, the first and second
sensors are assumed to be total failure between
k=51 and k=60, and k=101 and k=120,
respectively. For the remaining time interval, the
normal condition holds. Fig. 2 shows the mode

() of the IMM_FDD [12] and

MIMM_FDD  described

probabilities

in this for the

paper

assumed scenario.
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Fig. 2. Mode probabilities for total sensor failure
(— : normal mode, -- : 1st sensor failure mode, --
: 2nd sensor failure mode)

As can be seen from Figs. 2 (a) and (b), the two

schemes have the same performance when

a; = 0.0, which corresponds to the uncorrelated
case. If the value of the correlation coefficient is
increased, the fault detection performance of the
MIMM_FDD is improved than that of the IMM_FDD
as in the Figs. 2 (c), (d), (e), {f), (g), and (h).

Total Sensor F ailure
R

average pertage (%)

correlation coefficient (* )

Fig. 3. Comparison of FDD results for total sensor failure
(— : IMM_FDD, - : MIMM_FDD)

Fig. 3 presents the FDD performance indices in
one cycle using the IMM and MIMM approaches.
CDID, FA, IFID, and
(%)

increasing the correlation coefficient. The MIMM

The performance
MFD,

indices,

are presented in percentage while

scheme has more enhanced performance than the

IMM scheme under the colored measurement noise.
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2) Case 2: total actuator failure

For the second case, the first and second
actuators are assumed to be total failure between
k=91 and k=100, and &= 201 and k=210,
respectively. For the remaining time interval, the
normal condition holds. Fig. 4 shows the mode
probabilities of the IMM_FDD and MIMM_FDD. As
can be expected, the fault detection performances of
the two schemes are similar since the process noise

is uncorrelated.

Mous pragavility ror FDD
=
Mode proganlity far FDO

B w5 B B s .
e fsecond) e (second)

(a) IMM_FDD (e1=0.0)  (b) MIMM_FDD (¢1=0.0)
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Fig. 4. Mode probabilities of total actuator failure
(— : normal mode, - : 1st actuator failure mode,

- : 2nd actuator failure mode)

3) Case 3: partial sensor failure
In this case, the first and second sensors are
assumed to be 40% partial failure between k=51

and k=60, and £=101 and k=120,
respectively. For the remaining time interval, the
normal condition holds. Fig. 5 shows the mode
probabilities of the IMM_FDD and MIMM_FDD.
Similar to the case 1 for the total sensor failure,
the fault detection performance of the MIMM_FDD
is enhanced significantly when the measurement
noise is correlated sequentially.

The FDD performance indices are given in Fig.

6. The MIMM scheme yields better results than the

IMM scheme under the colored measurement noise.

1 '
63
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I S
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Fig. 5. Mode probabilities of partial sensor failure
(— : normal mode, --: 1st sensor failure mode, --
: 2nd sensor failure mode)

Partial Senser Failure

--------- [ SRR PO SR *
g AaEEEERS b
90
80
70
£
o B0 o
g
2 - A
g 8 S
‘; —— MFD
& 40
s
$
s 30
0
10
“6-.. RRRE LN
[ Z it TS S B AN
01 02 03 04 05 06 07 08 09

correlation coefficlent (v )

Fig. 6. Comparison of FDD results for partial
sensor failure )
(— : IMM_FDD, -- : MIMM_FDD)

(109)

V. Conclusion

Quite often in real situations, the measurement

noise is correlated sequentially in time when the

measurement frequency is high enough. In this

paper, we have described an effective FDD scheme

based on the modified IMM estimation algorithm.

In doing so, the correlated measurement noise is

formulated as the AR model and the generalized

decorrelation process is designed. The extensive

computer simulation results for the nuclear steam

generator model show that the proposed FDD

scheme has enhanced performance when the

measurement noise is correlated.
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