• 제목/요약/키워드: interacting multiple model method

검색결과 61건 처리시간 0.036초

IMM Method Using Intelligent Input Estimation for Maneuvering Target Tracking

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1278-1282
    • /
    • 2003
  • A new interacting multiple model (IMM) method using intelligent input estimation (IIE) is proposed to track a maneuvering target. In the proposed method, the acceleration level for each sub-model is determined by IIE-the estimation of the unknown acceleration input by a fuzzy system using the relation between maneuvering filter residual and non-maneuvering one. The genetic algorithm (GA) is utilized to optimize a fuzzy system for a sub-model within a fixed range of acceleration input. Then, multiple models are composed of these fuzzy systems, which are optimized for different ranges of acceleration input. In computer simulation for an incoming ballistic missile, the tracking performance of the proposed method is compared with those of the input estimation (IE) technique and the adaptive interacting multiple model (AIMM) method.

  • PDF

퍼지 게인을 갖는 칼만필터를 이용한 IMM 기법 (IMM Method Using Kalman Filter with Fuzzy Gain)

  • 노선영;주영훈;박진배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.425-428
    • /
    • 2006
  • In this paper, we propose an interacting multiple model (IMM) method using intelligent tracking filter with fuzzy gain to reduce tracking errors for maneuvering targets. In the proposed filter, to exactly estimate for each sub-model, we propose the fuzzy gain based on the relation between the filter residual and its variation. To optimize each fuzzy system, we utilize the genetic algorithm (GA). Finally, the tracking performance of the proposed method is compared with those of the adaptive interacting multiple model (AIMM) method and input estimation (IE) method through computer simulations.

  • PDF

IMM Method Using Kalman Filter with Fuzzy Gain

  • 노선영;주영훈;박진배
    • 한국지능시스템학회논문지
    • /
    • 제16권2호
    • /
    • pp.234-239
    • /
    • 2006
  • In this paper, we propose an interacting multiple model (IMM) method using intelligent tracking filter with fuzzy gain to reduce tracking errors for maneuvering targets. In the proposed filter, the unknown acceleration input for each sub-model is determined by mismatches between the modelled target dynamics and the actual target dynamics. After a acceleration input is detected, the state estimates for each sub-filter are modified. To modify the accurate estimation, we propose the fuzzy gain based on the relation between the filter residual and its variation. To optimize each fuzzy system, we utilize the genetic algorithm (GA). The tracking performance of the proposed method is compared with those of the adaptive interacting multiple model(AIMM) method and input estimation (IE) method through computer simulations.

SIMM Method Based on Acceleration Extraction for Nonlinear Maneuvering Target Tracking

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권2호
    • /
    • pp.255-263
    • /
    • 2012
  • This paper presents the smart interacting multiple model (SIMM) using the concept of predicted point and maximum noise level. Maximum noise level means the largest value of the mere noises. We utilize the positional difference between measured point and predicted point as acceleration. Comparing this acceleration with the maximum noise level, we extract the acceleration to recognize the characteristics of the target. To estimate the acceleration, we propose an optional algorithm utilizing the proposed method and the Kalman filter (KF) selectively. Also, for increasing the effect of estimation, the weight given at each sub-filter of the interacting multiple model (IMM) structure is varying according to the rate of noise scale. All the procedures of the proposed algorithm can be implemented by an on-line system. Finally, an example is provided to show the effectiveness of the proposed algorithm.

기동표적 추적을 위한 유전 알고리즘 기반 지능형 입력추정을 이용한 상호작용 다중모델 기법 (IMM Method Using GA-Based Intelligent Input Estimation for Maneuvering target Tracking)

  • 이범직;주영훈;박진배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 추계 학술대회 학술발표 논문집
    • /
    • pp.99-102
    • /
    • 2003
  • A new interacting multiple model (IMM) method using genetic algorithm (GA)-based intelligent input estimation(IIE) is proposed to track a maneuvering target. In the proposed method, the acceleration level for each sub-model is determined by IIE-the estimation of the unknown acceleration input by a fuzzy system using the relation between maneuvering filter residual and non-maneuvering one. The GA is utilized to optimize a fuzzy system fur a sub-model within a fixed range of acceleration input. Then, multiple models are composed of these fuzzy systems, which are optimized for different ranges of acceleration input. In computer simulation for an incoming ballistic missile, the tracking performance of the proposed method is compared with those of the input estimation(IE) technique and the adaptive interacting multiple model (AIMM) method.

  • PDF

혼합 은닉필터모델 (HFM)을 이용한 비정상 잡음에 오염된 음성신호의 향상 (Speech Enhancement Based on Mixture Hidden Filter Model (HFM) Under Nonstationary Noise)

  • 강상기;백성준;이기용;성굉모
    • 한국음향학회지
    • /
    • 제21권4호
    • /
    • pp.387-393
    • /
    • 2002
  • 비정상 잡음에 오염된 음성신호의 향상을 위하여 혼합 은닉필터모델 (HFM: Hidden Filter Model)에 기초한 기법을 제안하였다. 오염된 음성신호를 선형상태방정식으로 모델링하고 파라미터는 마코프 모델에 따른다고 가정하였다. 이 파라미터들은 잡음에 오염되지 않은 학습신호로부터 추정할 수 있다. 추정과정은 혼합 상호복합모델 (IMM: Interacting Multiple Model)에 기초하여 이루어지며, 음성신호의 추정값은 상호작용하는 병렬의 칼만 필터들의 가중합으로 주어진다. 실험결과로부터 제안한 방법의 성능이 기존의 방법에 비해 개선되었음을 확인할 수 있었다.

다중모델기법을 이용한 표적 상태추정 및 예측기 설계연구 (Design of target state estimator and predictor using multiple model method)

  • 정상근;이상국;유준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.478-481
    • /
    • 1996
  • Tracking a target of versatile maneuver recently demands a stable adaptation of tracker, and the multiple model techniques are being developed because of its ability to produce useful information of target maneuver. This paper presents the way to apply the multiple model method in a moving-target and moving-platform scenario, and the estimation and prediction results better than those of single Kalman filter.

  • PDF

IMM 필터를 이용한 고장허용 제어기법 및 비행 제어시스템에의 응용 (Fault Tolerant Control Design Using IMM Filter with an Application to a Flight Control System)

  • 김주호;황태현;최재원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.87-87
    • /
    • 2000
  • In this paper, an integrated design of fault detection, diagnosis and reconfigurable control tot multi-input and multi-output system is proposed. It is based on the interacting multiple model estimation algorithm, which is one of the most cost-effective adaptive estimation techniques for systems involving structural and/or parametric changes. This research focuses on the method to recover the performance of a system with failed actuators by switching plant models and controllers appropriately. The proposed scheme is applied to a fault tolerant control design for flight control system.

  • PDF

Fuzzy Interacting Multiple Model을 이용한 관측왜곡 시스템의 차량추적 (Vehicle-Tracking with Distorted Measurement via Fuzzy Interacting Multiple Model)

  • 박성근;황재필;류경진;김은태
    • 한국지능시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.863-870
    • /
    • 2008
  • 본 논문에서는 관측왜곡을 포함하고 있는 적응형 순항제어 시스템개발에 필수적인 필터링 방식에 대한 연구를 진행한다. 앞선 차량의 정확한 추적과 의도파악을 위하여 기본적으로 IMM (Interacting multiple model)을 사용하며 관측의 왜곡을 보상하기 위하여 확률적 퍼지 모델을 세안한다. 확률적 퍼지 모델은 기존의 결정형 퍼지모델과 달리 모델링 오차를 확률로 모델링한다. 끝으로 확률퍼지모델과 IMM을 결합한 FIMM (Fuzzy IMM)을 제안하여 관측왜곡이 발생하는 레이더를 이용한 전방차량의 추적 알고리즘을 제안한다.

3차원 기동표적을 사용한 수정된 상호작용 다중모델필터의 성능 분석 (Performance Evaluation of the Modified Interacting Multiple Model Filter Using 3-D Maneuvering Target)

  • 최성린;김기철;김용식;홍금식
    • 제어로봇시스템학회논문지
    • /
    • 제7권5호
    • /
    • pp.445-453
    • /
    • 2001
  • The multiple targets tracking problem has been one of the main issues in the radar applications area in the last decade. Besides the standard Kalman filtering, various methods including the variable dimen-sion filter, input estimation filter, interacting multiple model(IMM) filter, dederated variable dimension filter with input estimation, etc., have proposed to address the tracking and sensor fusion issues. In this pa- per, two existing tracking algorithm, i.e, the IMM filter and the variable dimension filter with input estima-tion(VDIE), are combined for the purpose of improving the tracking performance for maneuvering targets. To evaluate the tracking performance of the proposed algorithm, three typical maneuvering patterns, i.e., waver, pop-up, and high-diver motions, are defined and are applied to the modified IMM filter as well as the standard IMM filter. The smaller RMS tracking errors, in position and velocity, of the modified IMM filter than the standard IMM filter are demonstrated though computer simulations.

  • PDF