• Title/Summary/Keyword: intensity of rainfall

Search Result 749, Processing Time 0.026 seconds

Development of Standard Calibration System for the Rain Gauges by Weighting Method (질량측정에 의한 우량계 표준교정시스템 개발)

  • Shin Gang-Wook;Hong Sung-Tack
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.8
    • /
    • pp.818-823
    • /
    • 2006
  • Because the rain gauges of tipping bucket type can easily use the digital signal, the rain gauges are widely used for the meteorological observation. In general, the resolution of rain gauges of tipping bucket type can be categorized by the 0.1mm, 0.5mm, and 1.0mm classes. But, the error of the tipping bucket rain gauges is made by the intensity of rainfalls and is expected to make the standard calibration method for error measurement. Thus, we developed the hardware of standard calibration facility for rain gauges by weighting measurement method and proposed the standard procedure by rainfall intensity in this study Also, we calculated the uncertainty for the rainfall intensity and obtained useful result through the proposed calibration method.

Survey on sewerage operation/management planning for flooding (II) (하수관거시설의 침수대응 운영·관리 실태 연구 (II))

  • Ryu, Jaena;Cha, Young Joo;Oh, Jeill;Hyun, In Hwan;Kim, Young-Ran;Chang, Dae-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.3
    • /
    • pp.271-276
    • /
    • 2009
  • Under current design standard, sewers are designed to drain stormwater generated up to 10 year return period of storms. This implies sewer flooding could occur from rainfall exceeding a 10 year return period. 5, 10, 20 and 30 year return period of storm intensities were calculated for 22 locations (cities) of meterological stations over the nation and compared to the recorded rainfall intensities for the last 30 years. The comparison resulted in the numbers of year maximum rainfall intensities exceeded each return period. Using the questionnaire survey for "the incidences of flooding since 1980" of the previous paper (Survey on sewerage operation/management planning for flooding (I)), the actual rainfall records on the date of flooding events were analyzed to demonstrate the number of flooding events caused by the exceedance of sewer capacity. For the last 30 years, more than 6 years of year maximum rainfall intensity (20%) were larger than the 10 year return period of storm in 4 cities of the 22 used for the first analysis. The number of rainfall records that exceeded the 10 year return period was 50 of the 260 actual flooding events investigated from the survey.

Measurement of Rainfall Intensity Using a Weighting Tipping Bucket Raingauge (중량식 전도형 우량계를 이용한 강우강도 측정)

  • Kim Hyun Chul;Lee Bu Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.4
    • /
    • pp.211-217
    • /
    • 2004
  • The instrument used in this study consists of a lkg capacity loadcell and a Imm tipping bucket rain gauge. There are two signals: one is the weight of the water in the tipping bucket and the other is the pulse from the reversing mechanism of the tipping bucket. The loadcell measures the weight of water with a 0.0lmm resolution up to 1mm rainfall and the bucket reverses beyond 1mm. From this point, a pulse signal generates and the loadcell starts measuring the weight again. A field test was carried out with the range of rainfall intensity from 42mm/h to 250mm/h. The result shows an error range from -2.2% to + 2.6% in 12 measurement cases with a rainfall of l00mm or more. This result satisfies the WMO recommendation for rainfall intensity instrumentation which allows a 5% range. In a field experiment during 17 to 19 August, 2004, more than 100mm/h rainfall intensity was observed by this instrument, confirming that our instrument has a sufficient capacity of rainfall intensity measurement under extreme conditions like Jangma (Bai-u season). Compared with existing commercial models which employ a water drop measurement method, our method can give a practical solution for diagnostic check of remote rain gauges using two independent signals.

Analysis of Significance between SWMM Computer Simulation and Artificial Rainfall on Rainfall Runoff Delay Effects of Vegetation Unit-type LID System (식생유니트형 LID 시스템의 우수유출 지연효과에 대한 SWMM 전산모의와 인공강우 모니터링 간의 유의성 분석)

  • Kim, Tae-Han;Choi, Boo-Hun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.3
    • /
    • pp.34-44
    • /
    • 2020
  • In order to suggest performance analysis directions of ecological components based on a vegetation-based LID system model, this study seeks to analyze the statistical significance between monitoring results by using SWMM computer simulation and rainfall and run-off simulation devices and provide basic data required for a preliminary system design. Also, the study aims to comprehensively review a vegetation-based LID system's soil, a vegetation model, and analysis plans, which were less addressed in previous studies, and suggest a performance quantification direction that could act as a substitute device-type LID system. After monitoring artificial rainfall for 40 minutes, the test group zone and the control group zone recorded maximum rainfall intensity of 142.91mm/hr. (n=3, sd=0.34) and 142.24mm/hr. (n=3, sd=0.90), respectively. Compared to a hyetograph, low rainfall intensity was re-produced in 10-minute and 50-minute sections, and high rainfall intensity was confirmed in 20-minute, 30-minute, and 40-minute sections. As for rainwater run-off delay effects, run-off intensity in the test group zone was reduced by 79.8% as it recorded 0.46mm/min at the 50-minute point when the run-off intensity was highest in the control group zone. In the case of computer simulation, run-off intensity in the test group zone was reduced by 99.1% as it recorded 0.05mm/min at the 50-minute point when the run-off intensity was highest. The maximum rainfall run-off intensity in the test group zone (Dv=30.35, NSE=0.36) recorded 0.77mm/min and 1.06mm/min in artificial rainfall monitoring and SWMM computer simulation, respectively, at the 70-minute point in both cases. Likewise, the control group zone (Dv=17.27, NSE=0.78) recorded 2.26mm/min and 2.38mm/min, respectively, at the 50-minutes point. Through statistical assessing the significance between the rainfall & run-off simulating systems and the SWMM computer simulations, this study was able to suggest a preliminary design direction for the rainwater run-off reduction performance of the LID system applied with single vegetation. Also, by comprehensively examining the LID system's soil and vegetation models, and analysis methods, this study was able to compile parameter quantification plans for vegetation and soil sectors that can be aligned with a preliminary design. However, physical variables were caused by the use of a single vegetation-based LID system, and follow-up studies are required on algorithms for calibrating the statistical significance between monitoring and computer simulation results.

Estimation of Rainfall Intensity for MTSAT-1R Data using Microwave Rainfall (마이크로웨이브 강수량을 이용한 MTSAT-1R 위성의 강우강도 추정)

  • Jee, Joon-Bum;Lee, Kyu-Tae
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.511-525
    • /
    • 2010
  • Rainfall intensity was estimated using the MTSAT-1R infrared channels and the microwave satellite precipitation data. Brightness temperature of geostationary satellite is matched temporal and spatial to a variety of microwave satellite(SSM/I, SSMIS, AMSU-B, AMSRE, TRMM) precipitation data. Rainfall intensity was calculated by the look -up table using relationships of MTSAT-1R brightness temperature and microwave precipitation. Estimated rainfall is verified using by precipitation of TRMM satellite(TRMM3B42) and ground rainfall as AWS from Jul. 21 2008 to Jul. 25 2008. The results of rainfall estimated TRMM 2A12(TMI) that validated by AWS and TRMM3B42 precipitation are represented highly 0.38 and 0.61 by correlation coefficient, 5.81 mm/hr and 2.44 mm/hr by RMSE, 0.79 and 0.84 by POD and 0.65 and 0.87 by PC, respectively. Overall, estimated rainfall using by microwave satellite calculated 5 mm/hr or more comparing by AWS and 5 mm/hr or more comparing by TRMM3B42 precipitation, respectively. Validation results of correlation coefficient are shown series of TRMM 2A12, AMSRE, SSM/I, AMSU-B and SSMIS.

Calculation of Rainfall Triggering Index (RTI) to Predict the Occurrence of Debris Flow (토석류 발생 예측을 위한 강우경보지수 산정)

  • Nam, Dong-Ho;Lee, Suk-Ho;Kim, Man-Il;Kim, Byung-Sik
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.47-59
    • /
    • 2018
  • At present, there has been a wide range of studies on debris flow in Korea, more specifically, on rainfall characteristics that trigger debris flow including rainfall intensity, rainfall duration, and preceding rainfall. the prediction of landslide / debris flow relies on the criteria for landslide watch and warning by the Korea Forest Service (KFS, 2012). Despite this, it has been found that most incidents of debris flow were caused by rainfall above the level of landslide watch, maximum hourly rainfall, extensive damage was caused even under the watch level. Under these circumstances, we calculated a rainfall triggering index (RTI) using the main factors that trigger debris flow-rainfall, rainfall intensity, and cumulative rainfall-to design a more sophisticated watch / warning criteria than those by the KFS. The RTI was classified into attention, caution, alert, and evacuation, and was assessed through the application of two debris flow incidents that occurred in Umyeon Mountain, Seoul, and Cheongju, Inje, causing serious damage and casualties. Moreover, we reviewed the feasibility of the RTI by comparing it with the KFS's landslide watch / warning criteria (KFS, 2012).

Intervention Analysis of Urbanization Effect on Rainfall Data at the Seoul Rain Gauge Station (서울지점 강우자료에 나타난 도시화의 간섭 분석)

  • Yoo, Chul-Sang;Kim, Dae-Ha;Park, Sang-Hyoung;Kim, Byung-Su;Park, Chang-Yeol
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.8
    • /
    • pp.629-641
    • /
    • 2007
  • This study estimated the urbanization effect of Seoul, the largest city in Korea, on its rainfall. For a comparative analysis, two different data sets are used: One is the precipitation data at the Jeonju rain gauge station, which has a relatively long record length but least urbanization effect, and the other at the Ichon rain gauge station, which has a short record length but located very near to Seoul with least urbanization effect. Also, the difference of the rainfall between Seoul and Jeonju rain gauge stations, as an indicator of urbanization effect, is quantified by use of the intervention model. As a result, it was found that the maximum rainfall intensity of the annual maximum rainfall events shows the increasing trend, its duration the decreasing trend, and the mean intensity the decreasing trend especially after 1960. Also, the quantification of urbanization effect using the intervention model shows that the increasing trend of rainfall intensity and total volume is still on going.

Derivation of Minutely Rainfall Intensity-Duration-Frequency Relationships by Applying the Moupfouma Distribution (모포마 분포를 적용한 분단위 강우강도-지속시간-재현기간 관계의 유도)

  • Yoo, Chul-Sang;Park, Chang-Yeol;Kim, Kyoung-Jun;Jun, Kyung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.8
    • /
    • pp.643-654
    • /
    • 2007
  • This study proposes and evaluates a methodology for deriving the rainfall intensity- duration-frequency relationship for durations less than 10 minutes used for designing drainage systems in small urban catchments and roads. The method proposed in this study is based on the Moupfouma distribution, which has been evaluated by applying it to the rainfall data at the meteorological Seoul station. Summarizing the results is as follows: (1) The frequency analysis results using minutely rainfall data was found not to be corresponded with the extrapolation of that by the Ministry of Construction and Transportation (2000). (2) The annual maxima minutely rainfall data derived by applying the Moupfouma distribution to the accumulated 60-minute data was found to well reproduce the characteristics of those of observed. (3) The rainfall intensity-duration-frequency relationship derived by applying the Moufouma distribution to the accumulated 50-minute data and hourly data was found insignificant.

Analysis of Soil Saturation Characteristics According to the Presence or Absence of Soil Layer Depth and Impervious (침투해석시 토층심도 및 불투수층 유무에 따른 지반의 포화특성 분석)

  • Lee, Seung Woo;Chang, Bhum Soo;Kim, Yong Soo;Lee, Jong Gun;Lee, Ju Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.21-26
    • /
    • 2013
  • In recent study, infiltration analysis considering rainfall intensity is more economical and practical than existing analysis method. Revised construction slope design standard is also stated to full-fill infiltration analysis considering rainfall for practical stability review. Infiltration analysis considering rainfall for practical stability review. But, to infiltration analysis, the process is complicated by ground impermeability and rainfall intensity. In this study, we perform infiltration analysis to charge infiltration conditions, soil type and rainfall characteristics, for more pratical stability review. Using the result, we can suggest construable condition on the assumption that soil is saturated up to surface zone.

Rainfall Intensity Regulating Surface Erosion and Its Contribution to Sediment Yield on the Hillslope Devastated by a Shallow Landslide (산사태 붕괴사면에 있어서 표면침식에 영향을 미치는 강우강도와 그에 따른 유출토사량의 변화)

  • Kwon, Se Myoung;Seo, Jung Il;Cho, Ho Hyoung;Kim, Suk Woo;Lee, Dong Kyun;Ji, Byoung Yun;Chun, Kun-Woo
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.4
    • /
    • pp.314-323
    • /
    • 2013
  • To examine surface erosion and sediment export patterns on a hillslope, which was devastated by a shallow landslide and which was slowly revegetating by natural plant species, we surveyed variations in surface erosion depth on the upper-, middle- and lower-section of the hillslope, and subsequent sediment yield from the whole hillslope. The result showed that, with the passing of year, surface erosion on the devastated hillslope was regulated by higher rainfall intensity due to the supply-limitation of exportable sediment, and its variation range decreased. In addition, surface erosion on the upper-section with steep slope was regulated by higher rainfall intensity, which might result in raindrop erosion, compared to it on the lower-section with relatively gentle slope. Besides, the sediment yield from the devastated hillslope had nonlinear relationship with surface erosion depth on the hillslope because sediments on the hillslope are exported downwards while repeating their cycle of transport and redistribution. Our findings suggest the establishment of management strategy to prevent sediment-related disasters occurred during torrential rainfall events, which was based on the continuous field investigation on the hillslope devastated by landslides.