• Title/Summary/Keyword: intensity estimation

Search Result 619, Processing Time 0.032 seconds

Error Intensity Function Models for ML Estimation of Signal Parameter, Part I : Model Derivation (신호 파라미터의 ML 추정기법에 대한 에러 밀도 함수 모델에 관한 연구 I : 모델 정립)

  • Joong Kyu Kim
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.12
    • /
    • pp.1-11
    • /
    • 1993
  • This paper concentrates on models useful for analyzing the error performance of ML(Maximum Likelihood) estimators of a single unknown signal parameter: that is the error intensity model. We first develop the point process representation for the estimation error and the conditional distribution of the estimator as well as the distribution of error candidate point process. Then the error intensity function is defined as the probability dessity of the estimate and the general form of the error intensity function is derived. We then develop several intensity models depending on the way we choose the candidate error locations. For each case, we compute the explicit form of the intensity function and discuss the trade-off among models as well as the extendability to the case of multiple parameter estimation.

  • PDF

Estimation method of noise intensity by neural network for application in speech enhancement (음성강조에의 응용을 위한 신경회로망에 의한 잡음량의 추정법)

  • Choi Jae-Seung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.3 s.303
    • /
    • pp.129-136
    • /
    • 2005
  • To reduce the noise in the noisy speech, it is desirable to change the parameters of the speech processing system according to the noise intensity to reproduce a good quality speech. This paper proposes an estimation method of noise intensity using a three layered neural network, which is able to learn the three graded speeches that is degraded by white noise or road noise. Experimental results demonstrate that the noise intensity could be estimated by the neural network. Even if the speakers and speech data are different from the training data, estimation rates for the noise intensity can be estimated by the neural network with an average accuracy of $95\%$ or more for white noise.

Rainfall Intensity Estimation with Cloud Type using Satellite Data

  • Jee, Joon-Bum;Lee, Kyu-Tae
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.660-663
    • /
    • 2006
  • Rainfall estimation is important to weather forecast, flood control, hydrological plan. The empirical and statistical methods by measured data(surface rain gauge, rainfall radar, Satellite) is commonly used for rainfall estimation. In this study, the rainfall intensity for East Asia region was estimated using the empirical relationship between SSM/I data of DMSP satellite and brightness temperature of GEOS-9(10.7${\mu}m$) with cloud types(ISCCP and MSG classification). And the empirical formula for rainfall estimation was produced by PMM (Probability Matching Method).

  • PDF

Dual Detection-Guided Newborn Target Intensity Based on Probability Hypothesis Density for Multiple Target Tracking

  • Gao, Li;Ma, Yongjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.5095-5111
    • /
    • 2016
  • The Probability Hypothesis Density (PHD) filter is a suboptimal approximation and tractable alternative to the multi-target Bayesian filter based on random finite sets. However, the PHD filter fails to track newborn targets when the target birth intensity is unknown prior to tracking. In this paper, a dual detection-guided newborn target intensity PHD algorithm is developed to solve the problem, where two schemes, namely, a newborn target intensity estimation scheme and improved measurement-driven scheme, are proposed. First, the newborn target intensity estimation scheme, consisting of the Dirichlet distribution with the negative exponent parameter and target velocity feature, is used to recursively estimate the target birth intensity. Then, an improved measurement-driven scheme is introduced to reduce the errors of the estimated number of targets and computational load. Simulation results demonstrate that the proposed algorithm can achieve good performance in terms of target states, target number and computational load when the newborn target intensity is not predefined in multi-target tracking systems.

Estimation of seismicity parameters of the seismic zones of the Korean Peninsula using incomplete and complete data files (불완전한 자료 및 완전한 자료 목록을 이용한 한반도 지진구들의 지진활동 매개변수 평가)

  • 이기화
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.23-30
    • /
    • 1998
  • An estimation of seismic risk parameters by seismic zones of the Korea Peninsula in order to calculate the seismic hazard values using these was erformed. Seven seismic source zones were selected in consideration of seismicity and geology of Korean Peninsula. The seismicity parameters that should be estimated are maximum intensity, activity rate and b value in the Gutenberg - Richter relation. For computation of these parameters, least square method or maximum likelihood method is applied to the earthquake data in two ways; the one for the data without maximum intensity and the other with maximum intensity. Earthquake data since Choseon Dynasty is regarded as complete and estimation of parameters was made for these data using above two ways. And recently, a new method is published that estimate the seismicity parameters using mixed data containing large historical events and recent complete observations. Therefore, this method is applied to the whole earthquake data of the Korean Peninsula. It turns out that the b value computed considering maximum intensity is slightly lower than that computed considering without maximum intensity, and it becomes still lower when the incomplete data prior to Choseon Dynasty is used. In the case of the activity rates, the values obtained without maximum intensity and that with maximum intensity are similar, though they are lower when the incomplete data is used. The values of maximum intensities are usually lower when considering incomplete data. In the seismic source zone including the Yangsan Fault zone, however, the values are higher when considering the incomplete data.

  • PDF

Adaptive Iterative Depeckling of SAR Imagery

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.455-464
    • /
    • 2007
  • Lee(2007) suggested the Point-Jacobian iteration MAP estimation(PJIMAP) for noise removal of the images that are corrupted by multiplicative speckle noise. It is to find a MAP estimation of noisy-free imagery based on a Bayesian model using the lognormal distribution for image intensity and an MRF for image texture. When the image intensity is logarithmically transformed, the speckle noise is approximately Gaussian additive noise, and it tends to a normal probability much faster than the intensity distribution. The MRF is incorporated into digital image analysis by viewing pixel types as states of molecules in a lattice-like physical system. In this study, the MAP estimation is computed by the Point-Jacobian iteration using adaptive parameters. At each iteration, the parameters related to the Bayesian model are adaptively estimated using the updated information. The results of the proposed scheme were compared to them of PJIMAP with SAR simulation data generated by the Monte Carlo method. The experiments demonstrated an improvement in relaxing speckle noise and estimating noise-free intensity by using the adaptive parameters for the Ponit-Jacobian iteration.

Effect of Noise on The Estimation of Motion vector (잡음이 이동벡터 추정에 미치는 영향)

  • 김이한;김성대
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.6
    • /
    • pp.876-877
    • /
    • 1995
  • The techniques for the estimation of motion vector from the image sequence assume implicitly that the intensity of image is constant through the time. But this assumption can be distored by such causes as the added noises and the sub-pel motion following the sampling, and the errors can be generated on the motion estimation by the change of intensity. In this paper, we analyzed theoretically the effect of the change of intensity by the noise on the motion estimation with the white Gaussian noise. We know a fact that the signal may be fluctuated to reduce the effect of the noise and so the sampling rate have to make down. Also we confirmed the theoretically analysis through the experiments which investigated the relation between the noises and the sampling rates.

  • PDF

A Study on the Estimation of Lane position using difference of Intensity (Intensity차를 이용한 차선의 위치 검출에 관한 연구)

  • 손경희;송현승;노도환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.403-403
    • /
    • 2000
  • Generally estimation of driving direction uses the way which uses lane detection and vanishing point in autonomous-driving system. Especially we use Sub-window for decreasing Process time when we detect lane, but fixed sub-window can not detect lane because of some factors in road image. So we suggest algorithm using one-dimension line scan method to detect an exact position of lane.

  • PDF

Bayesian approach for the accuracy evaluating of the seismic demand estimation of SMRF

  • Ayoub Mehri Dehno;Hasan Aghabarati;Mehdi Mahdavi Adeli
    • Earthquakes and Structures
    • /
    • v.26 no.2
    • /
    • pp.117-130
    • /
    • 2024
  • Probabilistic model of seismic demand is the main tool used for seismic demand estimation, which is a fundamental component of the new performance-based design method. This model seeks to mathematically relate the seismic demand parameter and the ground motion intensity measure. This study is intended to use Bayesian analysis to evaluate the accuracy of the seismic demand estimation of Steel moment resisting frames (SMRFs) through a completely Bayesian method in statistical calculations. In this study, two types of intensity measures (earthquake intensity-related indices such as magnitude and distance and intensity indices related to ground motion and spectral response including peak ground acceleration (PGA) and spectral acceleration (SA)) have been used to form the models. In addition, an extensive database consisting of sixty accelerograms was used for time-series analysis, and the target structures included five SMRFs of three, six, nine, twelve and fifteen stories. The results of this study showed that for low-rise frames, first mode spectral acceleration index is sufficient to accurately estimate demand. However, for high-rise frames, two parameters should be used to increase the accuracy. In addition, adding the product of the square of earthquake magnitude multiplied by distance to the model can significantly increase the accuracy of seismic demand estimation.

Estimation Model for Optimum Probabilistic Rainfall Intensity on Hydrological Area - With Special Reference to Chonnam, Buk and Kyoungnam, Buk Area - (수문지역별 최적확률강우강도추정모형의 재정립 -영.호남 지역을 중심으로 -)

  • 엄병헌;박종화;한국헌
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.2
    • /
    • pp.108-122
    • /
    • 1996
  • This study was to introduced estimation model for optimum probabilistic rainfall intensity on hydrological area. Originally, probabilistic rainfall intensity formula have been characterized different coefficient of formula and model following watersheds. But recently in korea rainfall intensity formula does not use unionize applyment standard between administration and district. And mingle use planning formula with not assumption model. Following the number of year hydrological duration adjust areal index. But, with adjusting formula applyment was without systematic conduct. This study perceive the point as following : 1) Use method of excess probability of Iwai to calculate survey rainfall intensity value. 2) And, use method of least squares to calculate areal coefficient for a unit of 157 rain gauge station. And, use areal coefficient was introduced new probabilistic rainfall intensity formula for each rain gauge station. 3) And, use new probabilistic rainfall intensity formula to adjust a unit of fourteen duration-a unit of fifteen year probabilistic rainfall intensity. 4) The above survey value compared with adjustment value. And use three theory of error(absolute mean error, squares mean error, relative error ratio) to choice optimum probabilistic rainfall intensity formula for a unit of 157 rain gauge station.

  • PDF