• 제목/요약/키워드: intelligent systems

검색결과 11,359건 처리시간 0.04초

개인정보보호 분야의 연구자 네트워크와 성과 평가 프레임워크: 소셜 네트워크 분석을 중심으로 (The Framework of Research Network and Performance Evaluation on Personal Information Security: Social Network Analysis Perspective)

  • 김민수;최재원;김현진
    • 지능정보연구
    • /
    • 제20권1호
    • /
    • pp.177-193
    • /
    • 2014
  • 개인정보 분야에서의 다양한 정보 보안 이슈가 발생함에 따라 해당 분야의 전문가를 확인하기 위한 프레임워크는 매우 중요한 영역이 되었다. 전문가 탐색과정은 주로 연구 업적 등을 통한 주관적인 평가가 일반적이지만 보다 객관적인 방식을 통한 선정이 매우 중요하다. 소셜 네트워크 분석기법의 응용이 다양한 영역에서 활용됨에 따라 본 연구는 개인정보보호분야의 전문가를 확인하고 해당 전문가들의 연구실적을 판단하기 위한 분석 프레임워크를 제시하고자 하였다. 본 연구는 연구 목적에 따라 개인정보보호 연구영역의 연구성과 자료를 바탕으로 소셜 네트워크 분석을 실시하고 핵심연구자의 성과를 분석하였다. 수집된 데이터는 연구의 공저자, 발행기관, 소속기관 등의 네트워크 구성에 활용되어 핵심전문가 집단을 관리하기 위한 프레임워크를 제시하였다. 본 연구는 NDSL에서 최근 5년 동안 발표된 논문들을 중심으로 자료를 수집하였다. 연구자들이 학술 정보를 교환하는 정기 간행물인 학술지를 바탕으로 연구 네트워크를 형성하는 네트워크 자료를 수집함으로써 연구활동에 대한 정보를 분석할 수 있었다. 일반적으로 연구자들은 연구 결과를 논문으로 발표하고, 발표된 논문들이 다수의 관련 분야 전문가들에게 공유된다는 점에서 학술연구지는 연구자들의 지식관련 의사소통 공간이며 지식의 구조화에 핵심적인 역할을 수행한다. 그에 따라 본 연구의 연구 대상 분야로 설정한 개인정보보호 분야의 연구 구조를 이해하기 위해 국내에서 발표된 관련 분야의 논문들을 연구 대상으로 자료가 수집되었다. 특히 자료의 선별 기준은 국내 최대의 데이터베이스를 보유하고 있는 NDSL에서 개인정보보호 관련 키워드를 보유한 논문 데이터를 수집 및 정제하여 분석 자료로 사용하였다. 2005년부터 2013년까지 약 2,000개의 연구결과 중 주제 관련성, 공저자 추출 등을 수집하였다. 데이터 수집 이후 연구 분석을 위한 데이터 처리를 통하여 통해 총 784개의 논문을 선정하고 분석대상으로 확정하였다. 분석 결과, 개인정보보호 연구영역의 전문가 집단을 이용한 연구논문 성과에 대한 분석은 핵심 연구자들을 추출해내고 전문가 집단을 관리하는 데 도움을 제공할 수 있다. 특히 소속집단 및 연구논문 발행기관을 분석함으로써 개인정보보호 연구영역에서 확인되지 않았던 연구자들의 연구 논문 게재의 공저자 네트워크가 매우 밀접함을 확인할 수 있다. 또한 연구논문의 발행기관 및 소속집단의 특성을 추출함으로써 개인정보보호 영역의 전문가 평가지표로서 소셜 네트워크 지표들의 활용가능성을 확인하였다.

TV 시청률과 마이크로블로그 내용어와의 시간대별 관계 분석 (Analysis of the Time-dependent Relation between TV Ratings and the Content of Microblogs)

  • 최준연;백혜득;최진호
    • 지능정보연구
    • /
    • 제20권1호
    • /
    • pp.163-176
    • /
    • 2014
  • 소셜미디어 확산으로 많은 사용자들이 SNS를 통해 자신의 생각과 의견을 표출하며 다른 사용자들과 상호작용하고 있다. 특히 트위터와 같은 마이크로블로그는 짧은 문장을 통해 영화, TV, 사회 현상 등과 같은 공통의 주제에 대해 많은 사람이 즉각적으로 의견을 표출하고 교환하는 플랫폼의 역할을 수행하고 있다. TV방송 프로그램에 대해서도 의견과 감정을 마이크로블로그를 통해 표출하고 있는데, 본 연구에서는 마이크로블로그의 내용과 시청률과의 관계를 살펴보기 위해, 지난 공중파 방송 프로그램에 대한 트윗을 수집하고 부적절한 트윗들을 제거한 후 형태소 분석을 수행하였다. 추출된 형태소뿐 아니라 이모티콘, 신조어 등 사용자가 입력한 모든 단어들을 후보 자질로 삼아 시청률과의 상관관계를 분석하였다. 실험을 위해 2013년 1월부터 10개월간의 예능프로그램 트윗의 데이터를 수집하여 전국 시청률 데이터와 비교 분석을 수행하였다. 트윗의 발생량은 일주일 중 방송된 요일에 가장 많았으며, 특히 방송시간 부근에서 급격히 증가하는 모습을 보였다. 이것은 전국에 동시간에 방송되는 공중파 프로그램의 특성상 공통된 관심 주제를 제공하기 때문에 나타나는 현상으로 여겨진다. 횟수 기반 자질로 방송 일의 총 트윗 수와 리트윗 수, 방송시간 중의 트윗 수와 리트윗 수와 시청률과의 상관 관계를 분석하였으나 모두 낮은 상관 계수를 나타냈다. 이것은 단순한 트윗 발생 빈도는 방송 프로그램의 만족도 또는 시청률을 제대로 반영하고 있지 못함을 의미한다. 내용 기반 자질로 추출한 단어들 중에는 높은 상관관계를 보여주는 단어들이 발견되었으며, 표준어가 아닌 이모티콘과 신조어 중에도 높은 상관관계를 보여주는 자질이 나타났다. 또한 방송시작 전과 후에 따라 상관계수가 높은 단어가 상이함을 발견하였다. 매주 같은 시간에 방송되는 TV 프로그램의 특성상, 방송을 기다리고 기대하는 내용의 트윗과 방송 후 소감을 표현하는 트윗의 내용에 차이가 존재하였다. 이러한 분석결과는 단어에 따라 시청률과 연관성이 높은 시간대가 달라짐을 의미하며, 시청률을 측정하고자 할 때 각 단어들의 시간대를 고려해서 사용해야 함을 의미한다. 본 연구에서 제안한 방법은 기존의 표본 추출을 통해 이루어지는 TV 시청률 측정을 보완할 수 있는 방법에 활용할 수 있으리라 기대된다.

공공 서비스 수출 플랫폼을 위한 온톨로지 모형 (An Ontology Model for Public Service Export Platform)

  • 이광원;박세권;류승완;신동천
    • 지능정보연구
    • /
    • 제20권1호
    • /
    • pp.149-161
    • /
    • 2014
  • 공공 서비스의 수출의 경우 수출 절차와 대상 선정에 따른 다양한 문제가 발생하며, 공공 서비스 수출 플랫폼은 이러한 문제점들을 해결하기 위하여 사용자 중심의 유연하고, 개방형 구조의 디지털 생태계를 조성할 수 있도록 구현되어야 한다. 또한 공공서비스의 수출은 다수의 이해당사자가 참여하고 여러 단계의 과정을 거쳐야 하므로 사용자의 이해 종류와 탐색 컨설팅 협상 계약 등 수출 프로세스 단계별로 맞춤형 플랫폼 서비스 제공이 필수적이다. 이를 위해서 플랫폼 구조는 도메인과 정보의 정의 및 공유는 물론 지식화를 지원할 수 있어야 한다. 본 논문에서는 공공서비스 수출을 지원하는 플랫폼을 위한 온톨로지 모형을 제안한다. 서비스 플랫폼의 핵심 엔진은 시뮬레이터 모듈이며 시뮬레이터 모듈에서는 온톨로지를 사용하여 수출 비즈니스의 여러 컨텍스트들을 파악하고 정의하여 다른 모듈들과 공유하게 된다. 온톨로지는 공유 어휘를 통하여 개념들과 그들 간의 관계를 표현할 수 있으므로 특정 영역에서 구조적인 틀을 개발하기 위한 메타 정보를 구성하는 효과적인 도구로 잘 알려져 있다. 공공서비스 수출 플랫폼을 위한 온톨로지는 서비스, 요구사항, 환경, 기업, 국가 등 5가지 카테고리로 구성되며 각각의 온톨로지는 요구분석과 사례 분석을 통하여 용어를 추출하고 온톨로지의 식별과 개념적 특성을 반영하는 구조로 설계한다. 서비스 온톨로지는 목적효과, 요구조건, 활동, 서비스 분류 등으로 구성되며, 요구사항 온톨로지는 비즈니스, 기술, 제약으로 구성 된다. 환경 온톨로지는 사용자, 요구조건, 활동으로, 기업 온톨로지는 활동, 조직, 전략, 마케팅, 시간으로 구성되며, 국가 온톨로지는 경제, 사회기반시설, 법, 제도, 관습, 인프라, 인구, 위치, 국가전략 등으로 구성된다. 수출 대상 서비스와 국가의 우선순위 리스트가 생성되면 갭(gap) 분석과 매칭 알고리즘 등의 시뮬레이터를 통하여 수출기업과 수출지원 프로그램과의 시스템적 연계가 이루어진다. 제안하는 온톨로지 모형 기반의 공공서비스 수출지원 플랫폼이 구현되면 이해당사자 모두에게 도움이 되며 특히 정보 인프라와 수출경험이 부족한 중소기업에게 상대적으로 더 큰 도움이 될 것이다. 또한 개방형 디지털 생태계를 통하여 이해당사자들이 정보교환, 협업, 신사업 기획 등의 기회를 만들 수 있을 것으로 기대한다.

오피니언 마이닝과 네트워크 분석을 활용한 상품 커뮤니티 분석: 영화 흥행성과 예측 사례 (Product Community Analysis Using Opinion Mining and Network Analysis: Movie Performance Prediction Case)

  • 진위;김정수;김종우
    • 지능정보연구
    • /
    • 제20권1호
    • /
    • pp.49-65
    • /
    • 2014
  • 구전(WOM: Word of Mouth)는 주변 사람들에게 상품에 대한 경험을 입에서 입으로 전달하는 현상을 말하며 소셜 미디어의 발전으로 온라인 구전(eWOM: Electronic Word of Mouth) 형태로 발전하였다. 구전 효과의 중요성으로 인해서 대부분의 기업들의 자사의 상품이나 서비스에 대한 온라인 구전에 촉각을 세우고 있으며, 특히 영화와 같은 경험재의 경우에는 그 영향력이 더욱 크다. 본 연구에서는 영화 커뮤니티에 대한 사회 네트워크 분석을 통해서 영화 흥행성과 지표인 매출에 미치는 영향요인을 규명하고자 한다. 영화 흥행성과 연구들에서 주요하게 다루어진 영화에 대한 구전의 크기(volume)와 방향성(valence)과 같은 구전 요인들을 추가하여, 구전 네트워크의 중심성 척도를 영향 요인에 고려하였다. 구전의 크기, 방향성, 그리고 3가지 중심성 척도(연결 중심성, 매개 중심성, 근접 중심성)의 최종 영화 매출에 영향 관계를 가설로 설정하였다. 제시한 연구 모형을 검증하기 위하여 대표적인 온라인 영화 커뮤니티 사이트인 IMDb(Internet Movie Database)에서 영화 구전 데이터를 수집하였고, Box-Office-Mojo사이트에서 영화 매출 데이터를 수집하였다. 2012년 9월부터 1년 동안, 주간 Top-10에 포함된 적이 있는 영화들을 대상으로 하였으며, 총 103개의 영화가 선정되어 이 영화들에 대한 메타 데이터와 커뮤니티 데이터가 수집되었다. 영화 커뮤니티 네트워크는 평가자들간의 댓글 관계를 기초로 구축하였다. 본 연구에서 사용한 3가지 중심성 척도는 사회 네트워크 분석 도구인 NodeXL을 사용하여 계산되었으며, 각 영화별 커뮤니티 참여자들의 중심성 척도의 평균값을 활용하였다. 가설 검증의 사전 분석을 위한 상관관계 분석에서는 3가지 중심성 척도간에 상관 관계가 높은 것으로 파악되어서, 각각에 대하여 별도로 회귀분석을 수행하였다. 분석 결과, 기존 연구와 일관성 있게 구전의 크기와 방향성은 영화 성과지표인 최종 매출에 긍정적인 영향을 미치는 것으로 파악되었다. 또한 구전 네트워크 내의 참여자 매개중심성 평균은 영화의 최종 매출에 영향을 미치는 것으로 파악되었다. 하지만 연결중심성과 근접중심성은 최종 매출에 영향을 주지 못하는 것으로 나타났다.

적응형 부스팅을 이용한 파산 예측 모형: 건설업을 중심으로 (Bankruptcy Forecasting Model using AdaBoost: A Focus on Construction Companies)

  • 허준영;양진용
    • 지능정보연구
    • /
    • 제20권1호
    • /
    • pp.35-48
    • /
    • 2014
  • 2013년 건설 경기 전망 보고서에 따르면 주택건설경기 침체 상황의 지속으로 건설 기업의 유동성 위기가 지속될 것으로 전망된다. 건설업은 파산으로 인한 사회적 파급효과가 다른 산업에 비해 큰 편이지만, 업종의 특성상 다른 산업과는 상이한 자본구조와 부채비율, 현금흐름을 가지고 있어서 기업의 파산 예측이 더 어려운 측면이 있다. 건설업은 레버리지가 큰 산업으로 부채비율이 매우 높은 업종이며 현금흐름이 프로젝트 후반부에 집중되는 특성이 있다. 그리고 경기사이클에 따른 부침이 매우 심하여 경기하강국면에선 파산이 급증하는 양상을 보인다. 건설업이 레버리지 산업인 이상 건설업체의 파산율 증가는 여신을 공여한 은행에 큰 부담으로 작용한다. 그럼에도 그간의 파산예측모델이 주로 금융기관에 집중되어 왔고 건설업종에 특화된 연구는 드물었다. 기업의 재무 자료를 바탕으로 한 파산 예측 모델에 대한 연구는 오래 전부터 다양하게 진행되었다. 하지만, 일반적인 기업 전체를 대상으로 하는 모델이기 때문에, 건설 기업과 같이 유동성이 큰 기업의 예측에는 적절하지 못할 수 있다. 건설 산업은 오랜 사업 기간과 대규모 투자, 그리고 투자금 회수가 오래 걸리는 특징을 갖는 자본 집약 산업이다. 이로 인해 다른 산업과는 상이한 자본 구조를 갖기 마련이고, 다른 산업의 기업 재무 위험도를 판단하는 기준과 동일한 적용이 곤란할 수 있다. 최근에는 기계 학습을 바탕으로 한 기업 파산 예측 연구가 활발하다. 기계 학습의 대표적 응용 분야인 패턴 인식을 기업의 파산 예측에 응용한 것이다. 기업의 재무 정보를 바탕으로 패턴을 작성하고 이 패턴이 파산 위험 군에 속하는지 안전한 군에 속하는지 판단하는 것이다. 전통적인 Z-Score와 기계 학습을 이용한 파산 예측과 같은 기존 연구들은 특정 산업 분야가 아닌 일반적인 기업을 대상으로 하기 때문에 기업들의 특성을 전혀 고려하고 있지 못하다. 본 논문에서는 건설 기업을 규모에 따라 각 기법들의 예측 능력을 비교하여 적응형 부스팅이 가장 우수함을 확인하였다. 본 논문은 건설 기업을 자본금 규모에 따라 세 등급으로 분류하고 각각에 대해 적응형 부스팅의 예측력을 분석하였다. 실험 결과 적응형 부스팅이 다른 기법에 비해 예측 결과가 좋았고, 특히 자본금 규모가 500억 이상인 기업의 경우 아주 우수한 결과를 보였다.

데이터 마이닝과 텍스트 마이닝의 통합적 접근을 통한 병사 사고예측 모델 개발 (Development of the Accident Prediction Model for Enlisted Men through an Integrated Approach to Datamining and Textmining)

  • 윤승진;김수환;신경식
    • 지능정보연구
    • /
    • 제21권3호
    • /
    • pp.1-17
    • /
    • 2015
  • 최근, 군에서 가장 이슈가 되고 있는 문제는 기강 해이, 복무 부적응 등으로 인한 병력 사고이다. 이 같은 사고를 예방하는 데 있어 가장 중요한 것은, 사고의 요인이 될 수 있는 문제를 사전에 식별 관리하는 것이다. 이를 위해서 지휘관들은 병사들과의 면담, 생활관 순찰, 부모님과의 대화 등 나름대로의 노력을 기울이고 있기는 하지만, 지휘관 개개인의 역량에 따라 사고 징후를 식별하는 데 큰 차이가 나는 것이 현실이다. 본 연구에서는 이러한 문제점을 극복하고자 모든 지휘관들이 쉽게 획득 가능한 객관적 데이터를 활용하여 사고를 예측해 보려 한다. 최근에는 병사들의 생활지도기록부 DB화가 잘 되어있을 뿐 아니라 지휘관들이 병사들과 SNS상에서 소통하며 정보를 얻기 때문에 이를 데이터화 하여 잘 활용한다면 병사들의 사고예측 및 예방이 가능하다고 판단하였다. 본 연구는 이러한 병사의 내부데이터(생활지도기록부) 및 외부데이터(SNS)를 활용하여 그들의 관심분야를 파악하고 사고를 예측, 이를 지휘에 활용하는 데이터마이닝 문제를 다루며, 그 방법으로 토픽분석 및 의사결정나무 방법을 제안한다. 연구는 크게 두 흐름으로 진행하였다. 첫 번째는 병사들의 SNS에서 토픽을 분석하고 이를 독립변수화 하였고 두 번째는 병사들의 내부데이터에 이 토픽분석결과를 독립변수로 추가하여 의사결정나무를 수행하였다. 이 때 종속변수는 병사들의 사고유무이다. 분석결과 사고 예측 정확도가 약 92%로 뛰어난 예측력을 보였다. 본 연구를 기반으로 향후 장병들의 사고예측을 과학적으로 분석, 맞춤식으로 관리한다면 군대 내 각종 사고를 미연에 예방하는데 기여할 것으로 기대된다.

회사채 신용등급 예측을 위한 SVM 앙상블학습 (Ensemble Learning with Support Vector Machines for Bond Rating)

  • 김명종
    • 지능정보연구
    • /
    • 제18권2호
    • /
    • pp.29-45
    • /
    • 2012
  • 회사채 신용등급은 투자자의 입장에서는 수익률 결정의 중요한 요소이며 기업의 입장에서는 자본비용 및 기업 가치와 관련된 중요한 재무의사결정사항으로 정교한 신용등급 예측 모형의 개발은 재무 및 회계 분야에서 오랫동안 전통적인 연구 주제가 되어왔다. 그러나, 회사채 신용등급 예측 모형의 성과와 관련된 가장 중요한 문제는 등급별 데이터의 불균형 문제이다. 예측 문제에 있어서 데이터 불균형(Data imbalance) 은 사용되는 표본이 특정 범주에 편중되었을 때 나타난다. 데이터 불균형이 심화됨에 따라 범주 사이의 분류경계영역이 왜곡되므로 분류자의 학습성과가 저하되게 된다. 본 연구에서는 데이터 불균형 문제가 존재하는 다분류 문제를 효과적으로 해결하기 위한 다분류 기하평균 부스팅 기법 (Multiclass Geometric Mean-based Boosting MGM-Boost)을 제안하고자 한다. MGM-Boost 알고리즘은 부스팅 알고리즘에 기하평균 개념을 도입한 것으로 오분류된 표본에 대한 학습을 강화할 수 있으며 불균형 분포를 보이는 각 범주의 예측정확도를 동시에 고려한 학습이 가능하다는 장점이 있다. 회사채 신용등급 예측문제를 활용하여 MGM-Boost의 성과를 검증한 결과 SVM 및 AdaBoost 기법과 비교하여 통계적으로 유의적인 성과개선 효과를 보여주었으며 데이터 불균형 하에서도 벤치마킹 모형과 비교하여 견고한 학습성과를 나타냈다.

뉴스와 주가 : 빅데이터 감성분석을 통한 지능형 투자의사결정모형 (Stock-Index Invest Model Using News Big Data Opinion Mining)

  • 김유신;김남규;정승렬
    • 지능정보연구
    • /
    • 제18권2호
    • /
    • pp.143-156
    • /
    • 2012
  • 누구나 뉴스와 주가 사이에는 밀접한 관계를 있을 것이라 생각한다. 그래서 뉴스를 통해 투자기회를 찾고, 투자이익을 얻을 수 있을 것으로 기대한다. 그렇지만 너무나 많은 뉴스들이 실시간으로 생성 전파되며, 정작 어떤 뉴스가 중요한지, 뉴스가 주가에 미치는 영향은 얼마나 되는지를 알아내기는 쉽지 않다. 본 연구는 이러한 뉴스들을 수집 분석하여 주가와 어떠한 관련이 있는지 분석하였다. 뉴스는 그 속성상 특정한 양식을 갖지 않는 비정형 텍스트로 구성되어있다. 이러한 뉴스 컨텐츠를 분석하기 위해 오피니언 마이닝이라는 빅데이터 감성분석 기법을 적용하였고, 이를 통해 주가지수의 등락을 예측하는 지능형 투자의사결정 모형을 제시하였다. 그리고, 모형의 유효성을 검증하기 위하여 마이닝 결과와 주가지수 등락 간의 관계를 통계 분석하였다. 그 결과 뉴스 컨텐츠의 감성분석 결과값과 주가지수 등락과는 유의한 관계를 가지고 있었으며, 좀 더 세부적으로는 주식시장 개장 전 뉴스들과 주가지수의 등락과의 관계 또한 통계적으로 유의하여, 뉴스의 감성분석 결과를 이용해 주가지수의 변동성 예측이 가능할 것으로 판단되었다. 이렇게 도출된 투자의사결정 모형은 여러 유형의 뉴스 중에서 시황 전망 해외 뉴스가 주가지수 변동을 가장 잘 예측하는 것으로 나타났고 로지스틱 회귀분석결과 분류정확도는 주가하락 시 70.0%, 주가상승 시 78.8%이며 전체평균은 74.6%로 나타났다.

스마트교육을 위한 오픈 디지털교과서 (Open Digital Textbook for Smart Education)

  • 구영일;박충식
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.177-189
    • /
    • 2013
  • 스마트교육에서 디지털교과서의 역할은 학습자와 대면하는 교육미디어로써 그 중요성은 재론의 여지없다. 이러한 디지털교과서는 학습자의 편의와 더불어 교수자, 콘텐츠 제작자, 유통업자를 위하여 표준화되어야 활성화되고 산업화될 수 있다. 본 연구에서는 다음과 같은 3가지 목표를 지향하는 디지털교과서 표준화 방안을 모색한다. (1) 디지털교과서는 온-오프 수업을 모두 지원하는 혼합학습 매체의 역할을 해야 하며, 특별한 전용뷰어 없이 표준을 준수하는 모든 EPUB 뷰어에서 실행가능 해야 하며, 기존의 이러닝 학습 콘텐츠와 학습관리시스템를 활용할 수 있도록 하며, 디지털 교과서를 사용하는 학습자의 정보를 추적 관리할 수 있는 트랙킹기능이 있으면서도, 오프라인 동안의 정보를 축적하여 서버와 통신할 수 있는 기능도 필요하다. 디지털교과서의 표준으로서 EPUB을 고려하는 이유는 디지털교과서가 책의 형태를 가져야 하는데 이를 위해서 따로 표준을 정할 필요가 없으며, EPUB 표준을 채택함으로써 풍부한 콘텐츠, 유통구조, 산업기반을 활용할 수 있기 때문이다. (2) 디지털교과서는 오픈소스를 적극 활용하여 저비용으로 현재 사용가능한 서비스를 구성하여 표준과 더불어 실제 실행 가능한 프로그램으로 제시되어야 하며, 관련 학습 콘텐츠가 오픈마켓의 형태로 운영될 수 있어야 한다. (3) 디지털교과서는 학습자에게 적절한 학습 피드백을 제공하기 위하여 모든 학습활동 정보를 축적하고 관리될 수 있는 인프라를 표준에 따라 구축하여 교육 빅데이터 처리의 기반을 제공하여야 한다. 이북 표준인 EPUB 3.0을 기반으로 하는 오픈 디지털교과서는 (1) 학습활동 정보를 기록하고 (2) 이 학습활동 지원을 위한 서버와 통신하여야 한다. 현재 표준으로 정해져 있지 않은 이북의 기록과 통신 기능을 EPUB 3.0의 JavaScript로 구현하여 현재 EPUB 3.0 뷰어에서도 활용하면서 이를 차세대 이북 표준 또는 교육을 위한 이북 표준(EPUB 3.0 for education)으로 제안하여 향후 제정된 표준 이북 뷰어에서는 JavaScript없이도 처리되도록 하는 전략이 필요하다. 향후 연구는 제안한 오픈 디지털교과서 표준에 의한 오픈소스 프로그램을 개발하고, 개발된 오픈 디지털교과서의 학습활동정보를 활용한 새로운 교육서비스 방안(교육 빅데이터 활용방안 포함)을 제시하는 것이다.

키워드 네트워크 분석을 통해 살펴본 기술경영의 최근 연구동향 (A Study on Recent Research Trend in Management of Technology Using Keywords Network Analysis)

  • 고재창;조근태;조윤호
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.101-123
    • /
    • 2013
  • 최근 경제 패러다임의 변화로 인해 기업이 글로벌 경쟁우위 및 미래 성장동력 확보하기 위해서는 기술과 경영을 통합적으로 이해할 수 있는 학제적 지식을 바탕으로 기술연구의 동향을 파악하고 융합기술 및 유망기술 예측하여 지속적 혁신, 핵심역량 강화, 핵심기술 보유, 기술 융합 등을 통해 새로운 가치를 창출할 필요가 있다. 따라서 본 연구는 기술경영관련 연구의 거시적인 흐름을 분석하기 위해 동시단어 분석기반의 계량서지학적 방법론을 사용하였다. 즉, 최근 10년 동안 기술경영분야의 주요 해외 저널에 게재된 논문의 키워드를 수집한 다음, 빈도 분석, 초기 키워드 네트워크의 구조 분석, 시간이 지남에 따른 새로 생성된 키워드의 선호적 연결 및 성장 분석, 전체 네트워크에 대한 컴포넌트 분석 및 중심성 분석을 수행하였다. 이를 통해 기술경영분야의 논문에 대한 구체적인 연구 주제를 파악할 수 있고, 이들 간의 관계를 파악함으로써, 학제적 연구와 통섭을 위한 구체적인 연구주제들의 조합을 제시할 수 있다. 본 연구결과를 살펴보면 다음과 같다. 첫째, 논문 별 키워드는 1개~23개의 분포를 지니고 있으며, 평균적으로 논문 당 4.574개의 키워드가 있다. 또한 키워드 중 90%가 10년 동안 3번 이하로 사용되었다. 특히 1번만 사용된 키워드는 약 75%의 비중을 차지하고 있음을 확인하였다. 둘째, 키워드 네트워크는 좁은 세상 네트워크 및 척도 없는 네트워크의 특징을 따르고 있음을 확인하였다. 특히 기술경영관련 논문에 사용된 키워드 중 소수의 키워드의 독점화 경향이 높음을 확인할 수 있었다. 셋째, 선호적 연결 및 성장 분석을 통해 기술경영분야의 키워드는 시간이 지남에 따라 선호적 연결을 통한 생존과 소멸 과정에 의해 부익부 빈익빈 현상이 고착되고 있고 있음을 확인하였다. 또한 신규 키워드의 선호적 연결 정도 분석을 통해 신규 연구분야 또는 새로운 연구영역을 창출할 가능성이 있는 키워드 관련 연구 주제에 대한 관심이 시간이 지남에 따라 증가하다가 일정 시점이 지나면 감소함을 확인하였다. 넷째, 컴포넌트 분석 및 중심성 분석을 통해 기술경영관련 연구 동향을 확인하였다. 특히 중심성 분석을 통해 Innovation(혁신), R&D(연구개발), Patent(특허), Forecast(예측), Technology transfer(기술이전), Technology(기술), SME(중소기업) 등의 키워드가 연결중심성, 매개중심성, 근접중심성이 높음을 확인하였다. 본 연구의 분석결과는 기술경영의 연구 동향, 타 학문과의 통섭 및 신규 연구주제 선정 시 참고할 수 있는 유용한 정보로 활용될 수 있다.