• Title/Summary/Keyword: intelligent optimization algorithms

Search Result 176, Processing Time 0.026 seconds

An Enhanced Genetic Algorithm for Optimization of Multimodal (다봉성 함수의 최적화를 위한 향상된 유전알고리듬의 제안)

  • 김영찬;양보석
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.5
    • /
    • pp.373-378
    • /
    • 2001
  • The optimization method based on an enhanced genetic algorithms is for multimodal function optimization in this paper. This method is consisted of two main steps. The first step is a global search step using the genetic algorithm(GA) and function assurance criterion(FAC). The belonging of an population to initial solution group is decided according to the FAC. The second step is to decide the similarity between individuals, and to research the optimum solutions by single point method in reconstructive search space. Four numerical examples are also presented in this papers to comparing with conventional methods.

  • PDF

Species Adaptation Evolutionary Algorithm for Solving the Optimization Problems

  • Lee, Dong-Wook;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.233-238
    • /
    • 2003
  • Living creatures maintain their variety through speciation, which helps them to have more fitness for an environment. So evolutionary algorithm based on biological evolution must maintain variety in order to adapt to its environment. In this paper, we utilize the concept of speciation. Each individual of population creates their offsprings using mutation, and next generation consists of them. Each individual explores search space determined by mutation. Useful search space is extended by differentiation, then population explorers whole search space very effectively. If evolvable hardware evolves through mutation, it is useful way to explorer search space because of less varying inner structure. We verify the effectiveness of the proposed method by applying it to two optimization problems.

Multi-Objective Optimization of Rotor-Bearing System with dynamic Constraints Using IGA

  • Choi, Byung-Gun;Yang, Bo-Suk;Jun, Yeo-Dong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.403-410
    • /
    • 1998
  • An immune system has powerful abilities such as memory recognition and learning how to respond to invading antigens, and has been applied to many engineering algorithms in recent year. In this paper, the combined optimization algorithm (Immune-Genetic Algorithm: IGA) is proposed for multi-optimization problems by introduction the capability of the immune system that controls the proliferation of clones to the genetic algorithm. The new combined algorithm is applied to minimize the total weight of the rotor shaft and the transmitted forces at the bearings in order to demonstrate the merit of the combined algorithm. The inner diameter of the shaft and the bearing stiffness are chosen as the design variables. the results show that the combined algorithm can reduce both the weight of the shaft and the transmitted forces at the bearing with dynamic constraints.

  • PDF

Genetic Algorithms for Maximizing the Coverage of Sensor Deployment (최대 커버리지 센서 배치를 위한 유전 알고리즘)

  • Yoon, You-Rim;Kim, Yong-Hyuk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.406-412
    • /
    • 2010
  • In this paper, we formally define the problem of maximizing the coverage of sensor deployment, which is the optimization problem appeared in real-world sensor deployment, and analyze the properties of its solution space. To solve the problem, we proposed novel genetic algorithms, and we could show their superiority through experiments. When applying genetic algorithms to maximum coverage sensor deployment, the most important issue is how we evaluate the given sensor deployment efficiently. We could resolve the difficulty by using Monte Carlo method. By regulating the number of generated samples in the Monte Carlo evaluation of genetic algorithms, we could also reduce the computing time significantly without loss of solution quality.

Desing of Genetic Algorithms Based Optimal Fuzzy Controller and Stabilization Control of the Inverted Pendulum System (유전알고리즘에 의한 최적 퍼지 제어기의 설계와 도립전자 시스템의 안정화 제어)

  • 박정훈;김태우;임영도;소명옥;이준탁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.162-165
    • /
    • 1996
  • In this paper, we proposed an optimization method of the membership function and the numbers of fuzzy rule base for the stabilization controller of the inverted pendulum system by genetic algorithm(GAs). Conventional methods to these problems need to an expert knowledge or human experience. The proposed genetic algorithm method will tune automatically the input-output membership parameters and will optimize their rule-base.

  • PDF

A Survey on the Real Time Vehicle Routing Problems (실시간 차량 경로 계획 문제의 연구 동향)

  • Yang, Byoung-Hak
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.1
    • /
    • pp.155-166
    • /
    • 2008
  • During last two decades the transportation system has developed into very intelligent system with GIS, GPS and ITS. The practical transportation management system provides real time response module to manage the customer's order. We have surveyed research papers on the real time vehicle routing problem in last two decades to figure out the dynamic vehicle routing problem. The papers are classified by basic routing algorithms and by managing the dynamic events which are the order management, the routing re-optimization, the routing post-optimization and the waiting strategy.

The Design of Genetically Optimized Multi-layer Fuzzy Neural Networks

  • Park, Byoung-Jun;Park, Keon-Jun;Lee, Dong-Yoon;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.660-665
    • /
    • 2004
  • In this study, a new architecture and comprehensive design methodology of genetically optimized Multi-layer Fuzzy Neural Networks (gMFNN) are introduced and a series of numeric experiments are carried out. The gMFNN architecture results from a synergistic usage of the hybrid system generated by combining Fuzzy Neural Networks (FNN) with Polynomial Neural Networks (PNN). FNN contributes to the formation of the premise part of the overall network structure of the gMFNN. The consequence part of the gMFNN is designed using PNN. The optimization of the FNN is realized with the aid of a standard back-propagation learning algorithm and genetic optimization. The development of the PNN dwells on the extended Group Method of Data Handling (GMDH) method and Genetic Algorithms (GAs). To evaluate the performance of the gMFNN, the models are experimented with the use of a numerical example.

Global Optimum Searching Technique of Multi-Modal Function Using DNA Coding Method (DNA 코딩을 이용한 multi-modal 함수의 최적점 탐색방법)

  • 백동화;강환일;김갑일;한승수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.225-228
    • /
    • 2001
  • DNA computing has been applied to the problem of getting an optimal solution since Adleman's experiment. DNA computing uses strings with various length and four-type bases that makes more useful for finding a global optimal solutions of the complex multi-modal problems. This paper presents DNA coding method for finding optimal solution of the multi-modal function and compares the efficiency of this method with the genetic algorithms (GA). GA searches effectively an optimal solution via the artificial evolution of individual group of binary string and DNA coding method uses a tool of calculation or Information store with DNA molecules and four-type bases denoted by the symbols of A(Ademine), C(Cytosine), G(Guanine) and T(Thymine). The same operators, selection, crossover, mutation, are applied to the both DNA coding algorithm and genetic algorithms. The results show that the DNA based algorithm performs better than GA.

  • PDF

A Study of Traffic Signal Timing Optimization Based on PSO-BFO Algorithm (PSO-BFO 알고리즘을 통한 교통 신호 최적화 연구)

  • Hong Ki An;Gimok Bae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.182-195
    • /
    • 2023
  • Recently, research on traffic signal control using artificial intelligence algorithms has been receiving attention, and many traffic signal control models are being studied. However, most studies either focused on independent intersections or are theoretical studies that calculate signal cycle length according to changes in traffic volume. Therefore, this study was conducted on a signalized intersection - roundabout in Gajwa-ro. The Particle Swarm Optimization - Bacterial Foraging Optimization (PSO-BFO) algorithm was proposed, which is developed from the GA and PSO algorithms for minimizing congestion at two intersections. As a result, optimum cycle length was determined to be 158 seconds. The Verkehr In Stadten - SIMulationsmodell (VISSIM) results showed that there was 3.4% increased capacity, 8.2% reduced delay and 8.3% reduced number of stops at the Gajwa-ro signalized intersection. Additionally, at the roundabout, a 9.2% increase in capacity, a 7.1% reduction in delay, and a 27.2% decrease in the number of stops was observed.

Optimal deep machine learning framework for vibration mitigation of seismically-excited uncertain building structures

  • Afshin Bahrami Rad;Javad Katebi;Saman Yaghmaei-Sabegh
    • Structural Engineering and Mechanics
    • /
    • v.88 no.6
    • /
    • pp.535-549
    • /
    • 2023
  • Deep extreme learning machine (DELM) and multi-verse optimization algorithms (MVO) are hybridized for designing an optimal and adaptive control framework for uncertain buildings. In this approach, first, a robust model predictive control (RMPC) scheme is developed to handle the problem uncertainty. The optimality and adaptivity of the proposed controller are provided by the optimal determination of the tunning weights of the linear programming (LP) cost function for clustered external loads using the MVO. The final control policy is achieved by collecting the clustered data and training them by DELM. The efficiency of the introduced control scheme is demonstrated by the numerical simulation of a ten-story benchmark building subjected to earthquake excitations. The results represent the capability of the proposed framework compared to robust MPC (RMPC), conventional MPC (CMPC), and conventional DELM algorithms in structural motion control.