• 제목/요약/키워드: intelligent navigation

검색결과 516건 처리시간 0.021초

조건부 확률과 퍼지수를 이용한 전자상거래 검색 에이전트 모델 (Electronic Commerce Navigation Agent Model using Conditional Probability and Fuzzy Number)

  • 김명순;원성현;정환묵
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.219-223
    • /
    • 2001
  • In this paper, we proposed the intelligent navigation agent model for successive electronic commerce management. For allowing intelligence, we used conditional probability and trapezoidal fuzzy number. Our goal of study is make an intelligent automatic navigation agent model.

  • PDF

PSO를 이용한 지능형 로봇의 원격 주행 제어 (Remote Navigation Control for Intelligent Robot Using PSO)

  • 문현수;주영훈
    • 로봇학회논문지
    • /
    • 제5권1호
    • /
    • pp.64-69
    • /
    • 2010
  • In this paper, we propose remote navigation control for intelligent robot using particle swarm optimization(PSO). The proposed system consists of interfaces for intelligent robot navigation and user interface in order to control the intelligent robot remotely. And communication interfaces using TCP/IP socket is used. To do this, we first design the fuzzy navigation controller based on expert's knowledge for intelligent robot navigation. At this time, we use the PSO algorithm in order to identify the membership functions of fuzzy control rules. And then, we propose the remote system in order to navigate the robot remotely. Finally, we show the effectiveness and feasibility of the developed controller and remote system through some experiments.

유전알고리즘을 이용한 지능형 로봇의 주행 제어 (The Navigation Control for Intelligent Robot Using Genetic Algorithms)

  • 주영훈;조상균
    • 한국지능시스템학회논문지
    • /
    • 제15권4호
    • /
    • pp.451-456
    • /
    • 2005
  • 본 논문에서는 유전 알고리즘의 한 방법인 mGA를 이용하여 지능형 로봇의 주행제어 방법을 제안한다. 지능형 로봇의 주행에 필요한 퍼지 제어기의 설계는 전문가적 지식에 많이 의존한다. 이러한 전문가의 경험에 의해 설정된 퍼지 제어기의 여러 구성 요소들의 매개 변수 값들이 최적의 값이라는 보장이 없다. 상기 문제를 해결하기 위해 본 논문에서는 퍼지 제어 기의 구성 요소인 퍼지 규칙의 수와 멤버쉽 함수의 매개 변수들을 mGA를 이용하여 동정하는 방법을 제안한다. 제안된 방법에 의해 동정된 매개 변수들의 정확성과 효율성을 평가하기 위하여 지능형 로봇의 벽면 주행에 대한 모의실험을 수행한다.

자연어 질의가 가능한 퍼지 기반 지능형 전자상거래 검색 에이전트 (Fuzzy Theory based Electronic Commerce Navigation Agent that can Query by Natural Language)

  • 김명순;정환묵
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.270-273
    • /
    • 2001
  • In this paper, we proposed the intelligent navigation agent model for successive electronic commerce management. For allowing intelligence, we used fuzzy theory. Fuzzy theory is very useful method where keywords have vague conditions and system must process that conditions. So, using theory, we proposed the model that can process the vague keywords effectively. Through the this, we verified that we can get the more appropriate navigation result than any other crisp retrieval keywords condition.

  • PDF

퍼지추론을 이용한 실내환경에서의 주행신호인식 (Navigation Sign Recognition in Indoor enviroments Using Fuzzy Inference)

  • 김전호;유범재;조영조;박민용;고범석
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 춘계학술대회 학술발표 논문집
    • /
    • pp.141-144
    • /
    • 1997
  • This paper presents a method of navigation sign recognition in indoor environments using a fuzzy inference for an autonomous mobile robot. In order to adapt to image deformation of a navigation sign resulted from variations of view-points and distances, a multi-labeled template matching(MLTM) method and a dynamic area search method(DASM) are proposed. The DASM is proposed to detect correct feature points among incorrect feature points. Finally sugeno-style fuzzy inference are adopted for recognizing the navigation sign.

  • PDF

Comparison of Fuzzy and Crisp Controllers Applied to Navigation of a Sailboat

  • Tsubaki, P.;Miyamoto, S.
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1242-1245
    • /
    • 1993
  • This paper describes simulation of navigating a sailboat around obstacles to a goal as quickly and safely as possible. Navigation strategies using concepts from fuzzy control are compared with more conventional ones through application at the levels of choosing an optimal heading and steering the sailboat towards that heading.

  • PDF

The division of action situation of collision avoidance in intelligent collision avoidance system

  • Zheng, Zhongyi;Wu, Zhaolin
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2001년도 Proceeding of KIN-CIN Joint Symposium 2001 on Satellite Navigation/AIS, lntelligence , Computer Based Marine Simulation System and VDR
    • /
    • pp.114-119
    • /
    • 2001
  • Based on tole investigation on mariner’s behaviors in collision avoidance, actuality of collision avoidance at sea and the research on the uncertainty of collision avoidance behaviors adopted by two encounter vessels, and for the purpose to reduce the no-coordination action of collision avoidance between two encounter vessels, and on the base of different encounter situation in international convention for preventing collisions at sea, the concept of action situation between tee encounter vessels is proposed, and the directions for every encounter vessel to adopt course alteration to avoid collision are explained in different action situation. The mechanism of avoidance and reduction of no-coordination is established in intelligent collision avoidance system, and it is important id research on intelligent collision avoidance system.

  • PDF

Fuzzy Neural Network Based Sensor Fusion and It's Application to Mobile Robot in Intelligent Robotic Space

  • Jin, Tae-Seok;Lee, Min-Jung;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권4호
    • /
    • pp.293-298
    • /
    • 2006
  • In this paper, a sensor fusion based robot navigation method for the autonomous control of a miniature human interaction robot is presented. The method of navigation blends the optimality of the Fuzzy Neural Network(FNN) based control algorithm with the capabilities in expressing knowledge and learning of the networked Intelligent Robotic Space(IRS). States of robot and IR space, for examples, the distance between the mobile robot and obstacles and the velocity of mobile robot, are used as the inputs of fuzzy logic controller. The navigation strategy is based on the combination of fuzzy rules tuned for both goal-approach and obstacle-avoidance. To identify the environments, a sensor fusion technique is introduced, where the sensory data of ultrasonic sensors and a vision sensor are fused into the identification process. Preliminary experiment and results are shown to demonstrate the merit of the introduced navigation control algorithm.

소프트 컴퓨팅을 이용한 지능형 네비게이션에 관한 연구 (A Study on Intelligent Navigation System using Soft-computing)

  • 최인찬;이홍기;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제20권6호
    • /
    • pp.799-805
    • /
    • 2010
  • 본 논문은 사용자의 운행 정보를 이용하여 사용자의 선호도 및 성향과 주변의 환경을 판단하고 적용하여 사용자에게 적합한 경로를 추천하는 지능형 네비게이션 시스템을 제안한다. 이 네비게이션 시스템은 센서 정보와 지능형교통시스템의 정보를 이용하여 추천된 경로의 환경 상태와 지형상태를 평가하고 사용자의 감정 상태와 사용자에게 심리적인 영향을 주는 도로의 환경 상태도 고려한다. 또한 소프트 컴퓨팅 기법을 사용하여 인간의 선호도와 성향을 추론 및 학습하며 제안한 알고리즘은 시뮬레이션을 통해 검증한다.

Research on Information Providing Method for Intelligent Navigation System

  • Park, Hye-Sun;Kim, Kyong-Ho
    • 대한인간공학회지
    • /
    • 제31권5호
    • /
    • pp.657-670
    • /
    • 2012
  • Background: Today, numerous telematics technologies, i.e., technologies developed by integrating telecommunications with information processing, are applied in vehicles. One such developmental application of this technology to vehicles is to increase the safety or convenience of drivers by providing them with necessary information such as warnings and information on emergencies and traffic situations. However, under certain conditions, there is a high probability of traffic accidents if the driving workload is high. Nowadays, the navigation system is frequently used in the vehicles, this system provides various information including route to the driver. But, the existing navigation systems are not only considered a driver's reaction but also provide unilaterally to the information regardless of them. Such one-side information service type may miss important information to the driver. In addition, it sometimes interferes safety driving. Objective: To solve this problem, the intelligent navigation system needs to the providing way that it checks the driver's reactions after providing information. Namely, if the driver passes the information received from the navigation, then the intelligent system provides more loudly and more frequently. Method: Therefore, in this study we introduce the intelligent navigation system that it automatically controls modality type and its strength when the driver misses or overlooks the information for their safety and entertainment and we analyze the driver's cognitive responses about the modality type and its strength. Results: To evaluate the effectiveness of the proposed system, we analyzed the reaction time and driving workload for each type of the information, modality and its strength. Also we evaluated the users' subjective satisfaction and understanding based on a questionnaire.