• 제목/요약/키워드: intelligent navigation

Search Result 516, Processing Time 0.026 seconds

Electronic Commerce Navigation Agent Model using Conditional Probability and Fuzzy Number (조건부 확률과 퍼지수를 이용한 전자상거래 검색 에이전트 모델)

  • 김명순;원성현;정환묵
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.219-223
    • /
    • 2001
  • In this paper, we proposed the intelligent navigation agent model for successive electronic commerce management. For allowing intelligence, we used conditional probability and trapezoidal fuzzy number. Our goal of study is make an intelligent automatic navigation agent model.

  • PDF

Remote Navigation Control for Intelligent Robot Using PSO (PSO를 이용한 지능형 로봇의 원격 주행 제어)

  • Mun, Hyun-Su;Joo, Young-Hoon
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.1
    • /
    • pp.64-69
    • /
    • 2010
  • In this paper, we propose remote navigation control for intelligent robot using particle swarm optimization(PSO). The proposed system consists of interfaces for intelligent robot navigation and user interface in order to control the intelligent robot remotely. And communication interfaces using TCP/IP socket is used. To do this, we first design the fuzzy navigation controller based on expert's knowledge for intelligent robot navigation. At this time, we use the PSO algorithm in order to identify the membership functions of fuzzy control rules. And then, we propose the remote system in order to navigate the robot remotely. Finally, we show the effectiveness and feasibility of the developed controller and remote system through some experiments.

The Navigation Control for Intelligent Robot Using Genetic Algorithms (유전알고리즘을 이용한 지능형 로봇의 주행 제어)

  • Joo, Young-Hoon;Cho, Sang-Kyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.451-456
    • /
    • 2005
  • In this paper, we propose the navigation control method for intelligent robot using messy genetic algorithm. The fuzzy controller design for navigation of the intelligent robot was dependant on expert's knowledge. But, the parameters of the fuzzy logic controller obtained from expert's control action may not be outimal. In this paper, to solve the above problem, we propose the identification method to automatically tune the number of fuzzy rule and parameters of memberships of fuzzy controller using mGA. Finally, to show and evaluate the generality and feasibility of the proposed method, we provides some simulations for wall following navigation of intelligent robot.

Fuzzy Theory based Electronic Commerce Navigation Agent that can Query by Natural Language (자연어 질의가 가능한 퍼지 기반 지능형 전자상거래 검색 에이전트)

  • 김명순;정환묵
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.270-273
    • /
    • 2001
  • In this paper, we proposed the intelligent navigation agent model for successive electronic commerce management. For allowing intelligence, we used fuzzy theory. Fuzzy theory is very useful method where keywords have vague conditions and system must process that conditions. So, using theory, we proposed the model that can process the vague keywords effectively. Through the this, we verified that we can get the more appropriate navigation result than any other crisp retrieval keywords condition.

  • PDF

Navigation Sign Recognition in Indoor enviroments Using Fuzzy Inference (퍼지추론을 이용한 실내환경에서의 주행신호인식)

  • 김전호;유범재;조영조;박민용;고범석
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.141-144
    • /
    • 1997
  • This paper presents a method of navigation sign recognition in indoor environments using a fuzzy inference for an autonomous mobile robot. In order to adapt to image deformation of a navigation sign resulted from variations of view-points and distances, a multi-labeled template matching(MLTM) method and a dynamic area search method(DASM) are proposed. The DASM is proposed to detect correct feature points among incorrect feature points. Finally sugeno-style fuzzy inference are adopted for recognizing the navigation sign.

  • PDF

Comparison of Fuzzy and Crisp Controllers Applied to Navigation of a Sailboat

  • Tsubaki, P.;Miyamoto, S.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1242-1245
    • /
    • 1993
  • This paper describes simulation of navigating a sailboat around obstacles to a goal as quickly and safely as possible. Navigation strategies using concepts from fuzzy control are compared with more conventional ones through application at the levels of choosing an optimal heading and steering the sailboat towards that heading.

  • PDF

The division of action situation of collision avoidance in intelligent collision avoidance system

  • Zheng, Zhongyi;Wu, Zhaolin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2001.10a
    • /
    • pp.114-119
    • /
    • 2001
  • Based on tole investigation on mariner’s behaviors in collision avoidance, actuality of collision avoidance at sea and the research on the uncertainty of collision avoidance behaviors adopted by two encounter vessels, and for the purpose to reduce the no-coordination action of collision avoidance between two encounter vessels, and on the base of different encounter situation in international convention for preventing collisions at sea, the concept of action situation between tee encounter vessels is proposed, and the directions for every encounter vessel to adopt course alteration to avoid collision are explained in different action situation. The mechanism of avoidance and reduction of no-coordination is established in intelligent collision avoidance system, and it is important id research on intelligent collision avoidance system.

  • PDF

Fuzzy Neural Network Based Sensor Fusion and It's Application to Mobile Robot in Intelligent Robotic Space

  • Jin, Tae-Seok;Lee, Min-Jung;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.293-298
    • /
    • 2006
  • In this paper, a sensor fusion based robot navigation method for the autonomous control of a miniature human interaction robot is presented. The method of navigation blends the optimality of the Fuzzy Neural Network(FNN) based control algorithm with the capabilities in expressing knowledge and learning of the networked Intelligent Robotic Space(IRS). States of robot and IR space, for examples, the distance between the mobile robot and obstacles and the velocity of mobile robot, are used as the inputs of fuzzy logic controller. The navigation strategy is based on the combination of fuzzy rules tuned for both goal-approach and obstacle-avoidance. To identify the environments, a sensor fusion technique is introduced, where the sensory data of ultrasonic sensors and a vision sensor are fused into the identification process. Preliminary experiment and results are shown to demonstrate the merit of the introduced navigation control algorithm.

A Study on Intelligent Navigation System using Soft-computing (소프트 컴퓨팅을 이용한 지능형 네비게이션에 관한 연구)

  • Choi, In-Chan;Lee, Hong-Gi;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.799-805
    • /
    • 2010
  • In this paper, we propose an intelligent navigation system that selects a proper route for user and applies the user's preference, user's tendency and environmental state estimated by driving information of user and road state. The system uses data of sensors, navigation and intelligent transport system to evaluate conditions of roads and it considers state of user's emotion. The system also uses soft-computing method to infer and learn the user's preference and tendency. We verify the proposed algorithm by computer simulation.

Research on Information Providing Method for Intelligent Navigation System

  • Park, Hye-Sun;Kim, Kyong-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.5
    • /
    • pp.657-670
    • /
    • 2012
  • Background: Today, numerous telematics technologies, i.e., technologies developed by integrating telecommunications with information processing, are applied in vehicles. One such developmental application of this technology to vehicles is to increase the safety or convenience of drivers by providing them with necessary information such as warnings and information on emergencies and traffic situations. However, under certain conditions, there is a high probability of traffic accidents if the driving workload is high. Nowadays, the navigation system is frequently used in the vehicles, this system provides various information including route to the driver. But, the existing navigation systems are not only considered a driver's reaction but also provide unilaterally to the information regardless of them. Such one-side information service type may miss important information to the driver. In addition, it sometimes interferes safety driving. Objective: To solve this problem, the intelligent navigation system needs to the providing way that it checks the driver's reactions after providing information. Namely, if the driver passes the information received from the navigation, then the intelligent system provides more loudly and more frequently. Method: Therefore, in this study we introduce the intelligent navigation system that it automatically controls modality type and its strength when the driver misses or overlooks the information for their safety and entertainment and we analyze the driver's cognitive responses about the modality type and its strength. Results: To evaluate the effectiveness of the proposed system, we analyzed the reaction time and driving workload for each type of the information, modality and its strength. Also we evaluated the users' subjective satisfaction and understanding based on a questionnaire.