• Title/Summary/Keyword: intelligent content

Search Result 369, Processing Time 0.023 seconds

Knowledge Extraction Methodology and Framework from Wikipedia Articles for Construction of Knowledge-Base (지식베이스 구축을 위한 한국어 위키피디아의 학습 기반 지식추출 방법론 및 플랫폼 연구)

  • Kim, JaeHun;Lee, Myungjin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.43-61
    • /
    • 2019
  • Development of technologies in artificial intelligence has been rapidly increasing with the Fourth Industrial Revolution, and researches related to AI have been actively conducted in a variety of fields such as autonomous vehicles, natural language processing, and robotics. These researches have been focused on solving cognitive problems such as learning and problem solving related to human intelligence from the 1950s. The field of artificial intelligence has achieved more technological advance than ever, due to recent interest in technology and research on various algorithms. The knowledge-based system is a sub-domain of artificial intelligence, and it aims to enable artificial intelligence agents to make decisions by using machine-readable and processible knowledge constructed from complex and informal human knowledge and rules in various fields. A knowledge base is used to optimize information collection, organization, and retrieval, and recently it is used with statistical artificial intelligence such as machine learning. Recently, the purpose of the knowledge base is to express, publish, and share knowledge on the web by describing and connecting web resources such as pages and data. These knowledge bases are used for intelligent processing in various fields of artificial intelligence such as question answering system of the smart speaker. However, building a useful knowledge base is a time-consuming task and still requires a lot of effort of the experts. In recent years, many kinds of research and technologies of knowledge based artificial intelligence use DBpedia that is one of the biggest knowledge base aiming to extract structured content from the various information of Wikipedia. DBpedia contains various information extracted from Wikipedia such as a title, categories, and links, but the most useful knowledge is from infobox of Wikipedia that presents a summary of some unifying aspect created by users. These knowledge are created by the mapping rule between infobox structures and DBpedia ontology schema defined in DBpedia Extraction Framework. In this way, DBpedia can expect high reliability in terms of accuracy of knowledge by using the method of generating knowledge from semi-structured infobox data created by users. However, since only about 50% of all wiki pages contain infobox in Korean Wikipedia, DBpedia has limitations in term of knowledge scalability. This paper proposes a method to extract knowledge from text documents according to the ontology schema using machine learning. In order to demonstrate the appropriateness of this method, we explain a knowledge extraction model according to the DBpedia ontology schema by learning Wikipedia infoboxes. Our knowledge extraction model consists of three steps, document classification as ontology classes, proper sentence classification to extract triples, and value selection and transformation into RDF triple structure. The structure of Wikipedia infobox are defined as infobox templates that provide standardized information across related articles, and DBpedia ontology schema can be mapped these infobox templates. Based on these mapping relations, we classify the input document according to infobox categories which means ontology classes. After determining the classification of the input document, we classify the appropriate sentence according to attributes belonging to the classification. Finally, we extract knowledge from sentences that are classified as appropriate, and we convert knowledge into a form of triples. In order to train models, we generated training data set from Wikipedia dump using a method to add BIO tags to sentences, so we trained about 200 classes and about 2,500 relations for extracting knowledge. Furthermore, we evaluated comparative experiments of CRF and Bi-LSTM-CRF for the knowledge extraction process. Through this proposed process, it is possible to utilize structured knowledge by extracting knowledge according to the ontology schema from text documents. In addition, this methodology can significantly reduce the effort of the experts to construct instances according to the ontology schema.

Knowledge graph-based knowledge map for efficient expression and inference of associated knowledge (연관지식의 효율적인 표현 및 추론이 가능한 지식그래프 기반 지식지도)

  • Yoo, Keedong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.4
    • /
    • pp.49-71
    • /
    • 2021
  • Users who intend to utilize knowledge to actively solve given problems proceed their jobs with cross- and sequential exploration of associated knowledge related each other in terms of certain criteria, such as content relevance. A knowledge map is the diagram or taxonomy overviewing status of currently managed knowledge in a knowledge-base, and supports users' knowledge exploration based on certain relationships between knowledge. A knowledge map, therefore, must be expressed in a networked form by linking related knowledge based on certain types of relationships, and should be implemented by deploying proper technologies or tools specialized in defining and inferring them. To meet this end, this study suggests a methodology for developing the knowledge graph-based knowledge map using the Graph DB known to exhibit proper functionality in expressing and inferring relationships between entities and their relationships stored in a knowledge-base. Procedures of the proposed methodology are modeling graph data, creating nodes, properties, relationships, and composing knowledge networks by combining identified links between knowledge. Among various Graph DBs, the Neo4j is used in this study for its high credibility and applicability through wide and various application cases. To examine the validity of the proposed methodology, a knowledge graph-based knowledge map is implemented deploying the Graph DB, and a performance comparison test is performed, by applying previous research's data to check whether this study's knowledge map can yield the same level of performance as the previous one did. Previous research's case is concerned with building a process-based knowledge map using the ontology technology, which identifies links between related knowledge based on the sequences of tasks producing or being activated by knowledge. In other words, since a task not only is activated by knowledge as an input but also produces knowledge as an output, input and output knowledge are linked as a flow by the task. Also since a business process is composed of affiliated tasks to fulfill the purpose of the process, the knowledge networks within a business process can be concluded by the sequences of the tasks composing the process. Therefore, using the Neo4j, considered process, task, and knowledge as well as the relationships among them are defined as nodes and relationships so that knowledge links can be identified based on the sequences of tasks. The resultant knowledge network by aggregating identified knowledge links is the knowledge map equipping functionality as a knowledge graph, and therefore its performance needs to be tested whether it meets the level of previous research's validation results. The performance test examines two aspects, the correctness of knowledge links and the possibility of inferring new types of knowledge: the former is examined using 7 questions, and the latter is checked by extracting two new-typed knowledge. As a result, the knowledge map constructed through the proposed methodology has showed the same level of performance as the previous one, and processed knowledge definition as well as knowledge relationship inference in a more efficient manner. Furthermore, comparing to the previous research's ontology-based approach, this study's Graph DB-based approach has also showed more beneficial functionality in intensively managing only the knowledge of interest, dynamically defining knowledge and relationships by reflecting various meanings from situations to purposes, agilely inferring knowledge and relationships through Cypher-based query, and easily creating a new relationship by aggregating existing ones, etc. This study's artifacts can be applied to implement the user-friendly function of knowledge exploration reflecting user's cognitive process toward associated knowledge, and can further underpin the development of an intelligent knowledge-base expanding autonomously through the discovery of new knowledge and their relationships by inference. This study, moreover than these, has an instant effect on implementing the networked knowledge map essential to satisfying contemporary users eagerly excavating the way to find proper knowledge to use.

Clustering-based Hierarchical Scene Structure Construction for Movie Videos (영화 비디오를 위한 클러스터링 기반의 계층적 장면 구조 구축)

  • Choi, Ick-Won;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.5
    • /
    • pp.529-542
    • /
    • 2000
  • Recent years, the use of multimedia information is rapidly increasing, and the video media is the most rising one than any others, and this field Integrates all the media into a single data stream. Though the availability of digital video is raised largely, it is very difficult for users to make the effective video access, due to its length and unstructured video format. Thus, the minimal interaction of users and the explicit definition of video structure is a key requirement in the lately developing image and video management systems. This paper defines the terms and hierarchical video structure, and presents the system, which construct the clustering-based video hierarchy, which facilitate users by browsing the summary and do a random access to the video content. Instead of using a single feature and domain-specific thresholds, we use multiple features that have complementary relationship for each other and clustering-based methods that use normalization so as to interact with users minimally. The stage of shot boundary detection extracts multiple features, performs the adaptive filtering process for each features to enhance the performance by eliminating the false factors, and does k-means clustering with two classes. The shot list of a result after the proposed procedure is represented as the video hierarchy by the intelligent unsupervised clustering technique. We experimented the static and the dynamic movie videos that represent characteristics of various video types. In the result of shot boundary detection, we had almost more than 95% good performance, and had also rood result in the video hierarchy.

  • PDF

A User Driven Adaptive Bandwidth Video Streaming System (사용자 기반 가변 대역폭 영상 스트리밍 시스템)

  • Chung, Yeongjee;Ozturk, Yusuf
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.825-840
    • /
    • 2015
  • Adaptive bitrate (ABR) streaming technology has become an important and prevalent feature in many multimedia delivery systems, with content providers such as Netflix and Amazon using ABR streaming to increase bandwidth efficiency and provide the maximum user experience when channel conditions are not ideal. Where such systems could see improvement is in the delivery of live video with a closed loop cognitive control of video encoding. In this paper, we present streaming camera system which provides spatially and temporally adaptive video streams, learning the user's preferences in order to make intelligent scaling decisions. The system employs a hardware based H.264/AVC encoder for video compression. The encoding parameters can be configured by the user or by the cognitive system on behalf of the user when the bandwidth changes. A cognitive video client developed in this study learns the user's preferences(i.e. video size over frame rate) over time and intelligently adapts encoding parameters when the channel conditions change. It has been demonstrated that the cognitive decision system developed has the ability to control video bandwidth by altering the spatial and temporal resolution, as well as the ability to make scaling decisions.

A Study on the high-speed Display of Radar System Positive Afterimage using FPGA and Dual port SRAM (FPGA와 Dual Port SRAM 적용한 Radar System Positive Afterimage 고속 정보 표출에 관한 연구)

  • Shin, Hyun Jong;Yu, Hyeung Keun
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.4
    • /
    • pp.1-9
    • /
    • 2016
  • This paper was studied in two ways with respect to the information received from the video signal separation technique of PPI Scop radar device. The proposed technique consists in generating an image signal through the video signal separation and synthesis, symbol generation, the residual image signal generation process. This technology can greatly improve the operating convenience with improved ease of discrimination, screen readability for the operator in analyzing radar information. The first proposed method was constructed for high-speed FPGA-based information processing systems for high speed operation stability of the system. The second proposed method was implemented intelligent algorithms and a software algorithm function curve associated resources.This was required to meet the constraints on the radar information, analysis system. Existing radar systems have not the frame data analysis unit image. However, this study was designed to image data stored in the frame-by-frame analysis of radar images with express information MPEG4 video. Key research content is to highlight the key observations expresses the target, the object-specific monitoring information to the positive image processing algorithm and the function curve delays. For high-definition video, high-speed to implement data analysis and expressing a variety of information was applied to the ARM Processor Support in Pro ASIC3.

Multi-classifier Decision-level Fusion for Face Recognition (다중 분류기의 판정단계 융합에 의한 얼굴인식)

  • Yeom, Seok-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.4
    • /
    • pp.77-84
    • /
    • 2012
  • Face classification has wide applications in intelligent video surveillance, content retrieval, robot vision, and human-machine interface. Pose and expression changes, and arbitrary illumination are typical problems for face recognition. When the face is captured at a distance, the image quality is often degraded by blurring and noise corruption. This paper investigates the efficacy of multi-classifier decision level fusion for face classification based on the photon-counting linear discriminant analysis with two different cost functions: Euclidean distance and negative normalized correlation. Decision level fusion comprises three stages: cost normalization, cost validation, and fusion rules. First, the costs are normalized into the uniform range and then, candidate costs are selected during validation. Three fusion rules are employed: minimum, average, and majority-voting rules. In the experiments, unfocusing and motion blurs are rendered to simulate the effects of the long distance environments. It will be shown that the decision-level fusion scheme provides better results than the single classifier.

A Technique on the 3-D Terrain Analysis Modeling for Optimum Site Selection and development of Stereo Tourism in the Future (미래입체관광의 최적지선정 및 개발을 위한 3차원지형분석모델링 기법)

  • Yeon, Sang-Ho;Choi, Seung-Kuk
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.11
    • /
    • pp.415-422
    • /
    • 2013
  • The contents development for the Internet and cyber tour has been attempted in a number of areas. 3D topography of the spatial environment, land planning and land information contents as a 3D tour of the future ubiquitous city safe for tourism due to the implementation of information made available major area. Domestic service, and in urban areas of the country where land and precise spatial information in order to shoot satellites and aircraft in the area you want to mount the camera on a variety of photo images taken by conducting 3D spatial that is required is able to obtain the information. Geo spatial information in a variety of direct or indirect acquisition of the initial spatial data into a database for accurate collection, storage, editing, manipulation and application technology changes in the future by establishing a database of 3D spatial by securing content organization ubiquitous tourist to take advantage of new tourism industry was greatly. As a result of this study for future tourism using geo spatial information and analysis of 3D modeling by intelligent land information indirectly, with quite a few stereo site experience and a variety of tourist spatial acquisition and utilization of information could prove.

Brand Marketing Strategy of Live Streaming in Mobile Era : A Case Study of Tmall Platform

  • Liu, Lin;Aremu, Emmanuel Olugbemisola;Yoo, Dongwoo
    • Journal of East Asia Management
    • /
    • v.1 no.1
    • /
    • pp.65-87
    • /
    • 2020
  • In recent years, with the rapid development of network live streaming, with the popularization of mobile Internet and mobile terminal equipment, the live streaming industry has ushered in great development. A sudden outbreak of the COVID-19 makes the PC end live streaming which has been developed for many years enter a new era, giving birth to the rapid development of mobile end live streaming. Not only because of the expansion of the live streaming industry market, the rise of the trend of the national live streaming, but also because the mobile live streaming is more and more valued by the brand, becoming an important tool for brand communication and product promotion. It is because of its unique communication characteristics that some scholars believe that the era of precision marketing has been opened by live network. Mobile live from the initial fans to reward and promote the brand, to now in the form of live marketing, consumers can "buy while watching". The time period from the understanding of the goods to the final completion of the purchase behavior has been greatly shortened. It is conducive to improving sales volume and brand awareness. Marketing communication through mobile live platform has become a popular way of brand marketing. This paper mainly studies the current situation, methods, problems and development strategies of brand marketing activities with the help of live streaming platform under the background of mobile internet. Taking Tmall live streaming platform as an example, this paper analyzes several ways of brand marketing with the help of live streaming and some universal characteristics of live streaming marketing by using the relevant theories of marketing. In view of the problems existing in live streaming brand marketing, it puts forward relevant Improvement measures. First of all, the paper puts forward the innovation in content and form. Second, the paper suggests that we should make full use of new technologies such as AR and VR to effectively combine with mobile live broadcasting. Third, the paper explores the integration of multiple channels to create intelligent marketing, and further optimize the live interface of mobile terminals. Finally, the paper emphasizes that the government departments and the platform itself should jointly supervise the mobile network live streaming platform and establish a good live broadcasting environment for mobile terminals. With the help of mobile live streaming, the marketing mode has an important impact on the promotion of brand marketing. How to make better use of this business mode and accurately use mobile live broadcast to promote brand marketing, so that enterprises can create greater profits, is also of profound research significance.

An Analysis of Information Visualization Problems using User Interface Design Principles (이용자 인터페이스 설계 원칙에 의한 정보시각화 시스템 평가 및 문제점 분석)

  • Lee, Jee-Yeon
    • Journal of Information Management
    • /
    • v.34 no.2
    • /
    • pp.67-88
    • /
    • 2003
  • There have been increased interests in information visualization. Information visualization has been considered as a way to summarize textual data so that the users can access large amount of data more efficiently and effectively. However, many information visualization techniques stem from scientific visualization techniques, which might be difficult for the regular users to understand. More importantly, the system models used by most of the information visualization techniques do not have real world counterpart. For example, most of the users do not represent or process the textual data in terms of fisheye view or a topological map. This means that there is no affordance on the current information visualization systems from the users point of view. In this paper, we analyzed this problem by using the user interface design principles to point out what lacks in the current information visualization systems. More specifically, we have applied Nielson's Heuristic Evaluation technique to review four representative information visualization techniques. The analysis results confirmed our original hypothesis on why the current information visualization systems are not part of the mainstream information systems. Finally, we suggested to invest more efforts in improving the currently prevalent and familiar bullet list type textual information presentation method based on the usability studies and the intelligent content analysis.

A Moving Object Query Process System for Mobile Recommendation Service (모바일 추천 서비스를 위한 이동 객체 질의 처리 시스템)

  • Park, Jeong-Seok;Shin, Moon-Sun;Ryu, Keun-Ho;Jung, Young-Jin
    • The KIPS Transactions:PartD
    • /
    • v.14D no.7
    • /
    • pp.707-718
    • /
    • 2007
  • Recently, much studies for providing mobile users with suitable and useful content services, LBS(Location Based Service) corresponding to the change of users' location, are actively going on. First and foremost, this is basically owing to the progress of location management technologies such as GPS, mobile communication technology and the spread of personal devices like PDA and the cellular phones. Besides, the research scope of LBS has been changed from vehicle tracking and navigation services to intelligent and personalized services considering the changing information of conditions or environment where the users' are located. For example, it inputs the information such as heavy traffic, pollution, and accidents. The query languages which effectively search the stored vehicle and environment information have been studied depending on the increase of the information utilization. However, most of existing moving object query languages are not enough to provide a recommendation service for a user, because they can not be tested and evaluated in real world and did not consider changed environment information. In order to retrieve not only a vehicle location and environment condition but also use them, we suggest a moving object query language for recommendation service and implement a moving object query process system for supporting a query language. It can process a nearest neighbor query for recommendation service which considers various attributes such as a vehicle's location and direction, environment information. It can be applied to location based service application which utilizes the recommended factors based on environmental conditions.