• 제목/요약/키워드: intelligent ability

검색결과 477건 처리시간 0.021초

Extreme Learning Machine 기반 퍼지 패턴 분류기 설계 (Design of Fuzzy Pattern Classifier based on Extreme Learning Machine)

  • 안태천;노석범;황국연;왕계홍;김용수
    • 한국지능시스템학회논문지
    • /
    • 제25권5호
    • /
    • pp.509-514
    • /
    • 2015
  • 본 논문에서는 인공 신경망의 일종인 Extreme Learning Machine의 학습 알고리즘을 기반으로 하여 노이즈에 강한 특성을 보이는 퍼지 집합 이론을 이용한 새로운 패턴 분류기를 제안 한다. 기존 인공 신경망에 비해 학습속도가 매우 빠르며, 모델의 일반화 성능이 우수하다고 알려진 Extreme Learning Machine의 학습 알고리즘을 퍼지 패턴 분류기에 적용하여 퍼지 패턴 분류기의 학습 속도와 패턴 분류 일반화 성능을 개선 한다. 제안된 퍼지패턴 분류기의 학습 속도와 일반화 성능을 평가하기 위하여, 다양한 머신 러닝 데이터 집합을 사용한다.

군집 로봇의 협조 행동을 위한 강화 학습 기반의 진화 및 학습 알고리즘 (Reinforcement Learning Based Evolution and Learning Algorithm for Cooperative Behavior of Swarm Robot System)

  • 서상욱;김호덕;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제17권5호
    • /
    • pp.591-597
    • /
    • 2007
  • 군집 로봇시스템에서 개개의 로봇은 스스로 주위의 환경과 자신의 상태를 스스로 판단하여 행동하고, 필요에 따라서는 다른 로봇과 협조를 통하여 어떤 주어진 일을 수행할 수 있어야 한다. 따라서 개개의 로봇은 동적으로 변화하는 환경에 잘 적응할 수 있는 학습과 진화능력을 갖는 것이 필수적이다 이를 위하여 본 논문에서는 새로운 Polygon 기반의 Q-learning 알고리즘과 분산유전알고리즘을 이용한 새로운 자율이동로봇의 행동학습 및 진화방법을 제안한다. 또한 개개의 로봇이 통신을 통하여 염색체를 교환하는 분산유전알고리즘은 각기 다른 환경에서 학습한 우수한 염색체로부터 자신의 능력을 향상시킨다. 특히 본 논문에서는 진화의 성능을 향상시키기 위하여 강화학습의 특성을 이용한 선택 교배방법을 채택하였다. 제안된 방법은 협조탐색 문제에 적용하여 컴퓨터 모의실험을 통하여 그 유효성을 검증한다.

초·중등 인공지능 교육에서 컴퓨팅 사고력 및 수학적 사고력 향상을 위한 제언 (Suggestions for Improving Computational Thinking and Mathematical Thinking for Artificial Intelligence Education in Elementary and Secondary School)

  • 박상우;조정원
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.185-187
    • /
    • 2022
  • 오늘날 4차 산업혁명 시대에서 교육 패러다임의 급격한 변화로 인공지능(이하 AI) 교육이 점점 더 강조되고 있다. 2022 개정 교육과정은 미래사회에서 필요한 기초소양과 역량을 함양할 수 있는 AI 교육을 제시하고 있다. 본 연구에서는 초·중등학교 AI 교육에서 컴퓨팅 사고력 및 수학적 사고력 향상을 위해 다음과 같이 제언하고자 한다. 첫째, 컴퓨팅 사고력 교육 측면에서 학생들이 AI 개념과 원리를 잘 이해하고 실생활의 문제해결을 위한 능력을 키울 수 있는 교수 원리 연구가 필요하다. 둘째, AI를 이해하기 위한 수학적 사고력 측면의 요소로서 학생들이 수식을 이용한 알고리즘과 컴퓨터가 인간처럼 사고하는 과정에서 이루어지는 학습원리를 습득할 수 있는 교육 프로그램이 요구된다. 향후 연구 과제로 교수자와 학습자의 관계에서 나올 수 있는 역량있는 학습 효과성 분석을 통한 기대치에 관한 연구에 대하여 제시하였다.

  • PDF

이동 Ad-hoc 통신을 위한 지능형 거리추정 클러스터방식 (Clustering Technique of Intelligent Distance Estimation for Mobile Ad-hoc Network)

  • 박기홍;신성윤;이양원;이종찬;이진관;장혜숙
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권11호
    • /
    • pp.105-111
    • /
    • 2009
  • 본 논문에서는 차량 간 안전통신을 위하여 다중홉 클러스터링 방식의 문제점을 개선하여, 거리를 계산한 지능형 클러스터링(Intelligence Cluster) 기법을 제안하고자 한다. 고속 이동시 연계성이 없는 차량간에 거리를 계산하여 클러스터링을 하게 되면 설정된 거리 값으로 각 노드들의 연계성이 형성되게 된다. 동일 구성원이 된 노드들 사이에서 거리 값으로 헤더를 선출하게 되고 헤더는 멤버가 된 노드들에게 그룹 내 정보를 전달하게 된다. 헤더 선출 후, 이동성으로 인해 헤더가 이탈되면 긴급상황이 발생될 수 있다. 이때 정보전달은 패킷에 포함된 프로그램의 실행으로 노드에서 제공하는 지능형 클러스터를 이용하여 새로운 클러스터 헤더를 선출하여 전송할 수 있도록 하였다. 본 논문에서는 기존의 Store-and-Forward 라우팅 방식에 컴퓨팅 능력을 추가한 Store-Compute-Forward 방식으로 클러스터를 선출하는 이동 Ad-hoc 통신을 위한 지능형 거리추정 클러스터방식을 제안한다. 논문에서 제안한 이동 Ad-hoc 통신을 위한 지능형 거리추정 클러스터방식은 능동적이고 지능적인 멀티 홉 클러스터 라우팅 프로토콜로서 안정된 통신이 이루어 질 수 있도록 한다.

Fault Detection and Diagnosis System for a Three-Phase Inverter Using a DWT-Based Artificial Neural Network

  • Rohan, Ali;Kim, Sung Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권4호
    • /
    • pp.238-245
    • /
    • 2016
  • Inverters are considered the basic building blocks of industrial electrical drive systems that are widely used for various applications; however, the failure of electronic switches mainly affects the constancy of these inverters. For safe and reliable operation of an electrical drive system, faults in power electronic switches must be detected by an efficient system that is capable of identifying the type of faults. In this paper, an open switch fault identification technique for a three-phase inverter is presented. Single, double, and triple switching faults can be diagnosed using this method. The detection mechanism is based on stator current analysis. Discrete wavelet transform (DWT) using Daubechies is performed on the Clarke transformed (-) stator current and features are extracted from the wavelets. An artificial neural network is then used for the detection and identification of faults. To prove the feasibility of this method, a Simulink model of the DWT-based feature extraction scheme using a neural network for the proposed fault detection system in a three-phase inverter with an induction motor is briefly discussed with simulation results. The simulation results show that the designed system can detect faults quite efficiently, with the ability to differentiate between single and multiple switching faults.

Predictive Control for Linear Motor Conveyance Positioning System using DR-FNN

  • Lee, Jin-Woo;Sohn, Dong-Seop;Min, Jeong-Tak;Lee, Young-Jin;Lee, Kwon-Soon
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.307-310
    • /
    • 2003
  • In the maritime container terminal, LMTT(Linear Motor-based Transfer Technology) is horizontal transfer system for the yard automation, which has been proposed to take the place of AGV(Automated Guided Vehicle). The system is based on PMLSM (Permanent Magnetic Linear Synchronous Motor) that is consists of stator modules on the rail and shuttle car (mover). Because of large variant of mover's weight by loading and unloading containers, the difference of each characteristic of stator modules, and a stator module's trouble etc., LMCPS (Linear Motor Conveyance Positioning System) is considered as that the system is changed its model suddenly and variously. In this paper, we will introduce the soft-computing method of a multi-step prediction control for LMCPS using DR-FNN (Dynamically-constructed Recurrent Fuzzy Neural Network). The proposed control system is used two networks for multi-step prediction. Consequently, the system has an ability to adapt for external disturbance, cogging force, force ripple, and sudden changes of itself.

  • PDF

A Study on Performance Assessment Methods by Using Fuzzy Membership Function and Fuzzy Reasoning

  • Je, Sung-kwan;Jang, Hye-Won;Shin, Bok-Suk;Kim, Cheol-Ki;Jaehyun Cho;Kim, Kwang-Baek
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.608-611
    • /
    • 2003
  • Performance assessment was introduced to improvement of self-directed learning and method of assessment for differenced learning as the seventh educational curriculum is enforced. Performance assessment is overcoming limitation about problem solving ability and higher thinking abilities assessment that is problem of a written examination and get into the spotlight by way for quality of class and school normalization. But performance assessment has problems about possibilities of assessment fault by appraisal, fairness, reliability, and validity of grading, ambiguity of grading standard, difficulty about objectivity security etc. This study proposes fuzzy performance assessment system to solve problem of the conventional performance assessment. This paper presented an objective and reliable performance assessment method through fuzzy reasoning, design fuzzy membership function and define fuzzy rule analyzing factor that influence in each sacred ground of performance assessment to account principle subject. Also, performance assessment item divides by formation estimation and subject estimation and designed membership function in proposed performance assessment method. Performance assessment result that is worked through fuzzy performance assessment system can pare down burden about appraisal's fault and provide fair and reliable assessment result through grading that have correct standard and consistency to students.

  • PDF

Random generator-controlled backpropagation neural network to predicting plasma process data

  • Kim, Sungmo;Kim, Sebum;Kim, Byungwhan
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.599-602
    • /
    • 2003
  • A new technique is presented to construct predictive models of plasma etch processes. This was accomplished by combining a backpropagation neural network (BPNN) and a random generator (RC). The RG played a critical role to control neuron gradients in the hidden layer, The predictive model constructed in this way is referred to as a randomized BPNN (RG-BPNN). The proposed scheme was evaluated with a set of experimental plasma etch process data. The etch process was characterized by a 2$^3$ full factorial experiment. The etch responses modeled are 4, including aluminum (Al) etch rate, profile angle, Al selectivity, and do bias. Additional test data were prepared to evaluate model appropriateness. The performance of RC-BPNN was evaluated as a function of the number of hidden neurons and the range of gradient. for given range and hidden neurons, 100 sets of random neuron gradients were generated and among them one best set was selected for evaluation. Compared to the conventional BPNN, the proposed RC-BPNN demonstrated about 50% improvements in all comparisons. This illustrates that the RG-BPNN of multi-valued gradients is an effective way to considerably improve the predictive ability of current BPNN of single-valued gradient.

  • PDF

Development of Expert Systems using Automatic Knowledge Acquisition and Composite Knowledge Expression Mechanism

  • Kim, Jin-Sung
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.447-450
    • /
    • 2003
  • In this research, we propose an automatic knowledge acquisition and composite knowledge expression mechanism based on machine learning and relational database. Most of traditional approaches to develop a knowledge base and inference engine of expert systems were based on IF-THEN rules, AND-OR graph, Semantic networks, and Frame separately. However, there are some limitations such as automatic knowledge acquisition, complicate knowledge expression, expansibility of knowledge base, speed of inference, and hierarchies among rules. To overcome these limitations, many of researchers tried to develop an automatic knowledge acquisition, composite knowledge expression, and fast inference method. As a result, the adaptability of the expert systems was improved rapidly. Nonetheless, they didn't suggest a hybrid and generalized solution to support the entire process of development of expert systems. Our proposed mechanism has five advantages empirically. First, it could extract the specific domain knowledge from incomplete database based on machine learning algorithm. Second, this mechanism could reduce the number of rules efficiently according to the rule extraction mechanism used in machine learning. Third, our proposed mechanism could expand the knowledge base unlimitedly by using relational database. Fourth, the backward inference engine developed in this study, could manipulate the knowledge base stored in relational database rapidly. Therefore, the speed of inference is faster than traditional text -oriented inference mechanism. Fifth, our composite knowledge expression mechanism could reflect the traditional knowledge expression method such as IF-THEN rules, AND-OR graph, and Relationship matrix simultaneously. To validate the inference ability of our system, a real data set was adopted from a clinical diagnosis classifying the dermatology disease.

  • PDF

대용량 자료에 대한 서포트 벡터 회귀에서 모수조절 (Parameter Tuning in Support Vector Regression for Large Scale Problems)

  • 류지열;곽민정;윤민
    • 한국지능시스템학회논문지
    • /
    • 제25권1호
    • /
    • pp.15-21
    • /
    • 2015
  • 커널에 대한 모수의 조절은 서포트 벡터 기계의 일반화 능력에 영향을 준다. 이와 같이 모수들의 적절한 값을 결정하는 것은 종종 어려운 작업이 된다. 서포트 벡터 회귀에서 이와 같은 모수들의 값을 결정하기 위한 부담은 앙상블 학습을 사용함으로써 감소시킬 수 있다. 그러나 대용량의 자료에 대한 문제에 직접적으로 적용하기에는 일반적으로 시간 소모적인 방법이다. 본 논문에서 서포트 벡터 회귀의 모수 조절에 대한 부담을 감소하기 위하여 원래 자료집합을 유한개의 부분집합으로 분해하는 방법을 제안하였다. 제안하는 방법은 대용량의 자료들인 경우와 특히 불균등 자료 집합에서 효율적임을 보일 것이다.