본 논문에서는 인공 신경망의 일종인 Extreme Learning Machine의 학습 알고리즘을 기반으로 하여 노이즈에 강한 특성을 보이는 퍼지 집합 이론을 이용한 새로운 패턴 분류기를 제안 한다. 기존 인공 신경망에 비해 학습속도가 매우 빠르며, 모델의 일반화 성능이 우수하다고 알려진 Extreme Learning Machine의 학습 알고리즘을 퍼지 패턴 분류기에 적용하여 퍼지 패턴 분류기의 학습 속도와 패턴 분류 일반화 성능을 개선 한다. 제안된 퍼지패턴 분류기의 학습 속도와 일반화 성능을 평가하기 위하여, 다양한 머신 러닝 데이터 집합을 사용한다.
군집 로봇시스템에서 개개의 로봇은 스스로 주위의 환경과 자신의 상태를 스스로 판단하여 행동하고, 필요에 따라서는 다른 로봇과 협조를 통하여 어떤 주어진 일을 수행할 수 있어야 한다. 따라서 개개의 로봇은 동적으로 변화하는 환경에 잘 적응할 수 있는 학습과 진화능력을 갖는 것이 필수적이다 이를 위하여 본 논문에서는 새로운 Polygon 기반의 Q-learning 알고리즘과 분산유전알고리즘을 이용한 새로운 자율이동로봇의 행동학습 및 진화방법을 제안한다. 또한 개개의 로봇이 통신을 통하여 염색체를 교환하는 분산유전알고리즘은 각기 다른 환경에서 학습한 우수한 염색체로부터 자신의 능력을 향상시킨다. 특히 본 논문에서는 진화의 성능을 향상시키기 위하여 강화학습의 특성을 이용한 선택 교배방법을 채택하였다. 제안된 방법은 협조탐색 문제에 적용하여 컴퓨터 모의실험을 통하여 그 유효성을 검증한다.
오늘날 4차 산업혁명 시대에서 교육 패러다임의 급격한 변화로 인공지능(이하 AI) 교육이 점점 더 강조되고 있다. 2022 개정 교육과정은 미래사회에서 필요한 기초소양과 역량을 함양할 수 있는 AI 교육을 제시하고 있다. 본 연구에서는 초·중등학교 AI 교육에서 컴퓨팅 사고력 및 수학적 사고력 향상을 위해 다음과 같이 제언하고자 한다. 첫째, 컴퓨팅 사고력 교육 측면에서 학생들이 AI 개념과 원리를 잘 이해하고 실생활의 문제해결을 위한 능력을 키울 수 있는 교수 원리 연구가 필요하다. 둘째, AI를 이해하기 위한 수학적 사고력 측면의 요소로서 학생들이 수식을 이용한 알고리즘과 컴퓨터가 인간처럼 사고하는 과정에서 이루어지는 학습원리를 습득할 수 있는 교육 프로그램이 요구된다. 향후 연구 과제로 교수자와 학습자의 관계에서 나올 수 있는 역량있는 학습 효과성 분석을 통한 기대치에 관한 연구에 대하여 제시하였다.
본 논문에서는 차량 간 안전통신을 위하여 다중홉 클러스터링 방식의 문제점을 개선하여, 거리를 계산한 지능형 클러스터링(Intelligence Cluster) 기법을 제안하고자 한다. 고속 이동시 연계성이 없는 차량간에 거리를 계산하여 클러스터링을 하게 되면 설정된 거리 값으로 각 노드들의 연계성이 형성되게 된다. 동일 구성원이 된 노드들 사이에서 거리 값으로 헤더를 선출하게 되고 헤더는 멤버가 된 노드들에게 그룹 내 정보를 전달하게 된다. 헤더 선출 후, 이동성으로 인해 헤더가 이탈되면 긴급상황이 발생될 수 있다. 이때 정보전달은 패킷에 포함된 프로그램의 실행으로 노드에서 제공하는 지능형 클러스터를 이용하여 새로운 클러스터 헤더를 선출하여 전송할 수 있도록 하였다. 본 논문에서는 기존의 Store-and-Forward 라우팅 방식에 컴퓨팅 능력을 추가한 Store-Compute-Forward 방식으로 클러스터를 선출하는 이동 Ad-hoc 통신을 위한 지능형 거리추정 클러스터방식을 제안한다. 논문에서 제안한 이동 Ad-hoc 통신을 위한 지능형 거리추정 클러스터방식은 능동적이고 지능적인 멀티 홉 클러스터 라우팅 프로토콜로서 안정된 통신이 이루어 질 수 있도록 한다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제16권4호
/
pp.238-245
/
2016
Inverters are considered the basic building blocks of industrial electrical drive systems that are widely used for various applications; however, the failure of electronic switches mainly affects the constancy of these inverters. For safe and reliable operation of an electrical drive system, faults in power electronic switches must be detected by an efficient system that is capable of identifying the type of faults. In this paper, an open switch fault identification technique for a three-phase inverter is presented. Single, double, and triple switching faults can be diagnosed using this method. The detection mechanism is based on stator current analysis. Discrete wavelet transform (DWT) using Daubechies is performed on the Clarke transformed (-) stator current and features are extracted from the wavelets. An artificial neural network is then used for the detection and identification of faults. To prove the feasibility of this method, a Simulink model of the DWT-based feature extraction scheme using a neural network for the proposed fault detection system in a three-phase inverter with an induction motor is briefly discussed with simulation results. The simulation results show that the designed system can detect faults quite efficiently, with the ability to differentiate between single and multiple switching faults.
In the maritime container terminal, LMTT(Linear Motor-based Transfer Technology) is horizontal transfer system for the yard automation, which has been proposed to take the place of AGV(Automated Guided Vehicle). The system is based on PMLSM (Permanent Magnetic Linear Synchronous Motor) that is consists of stator modules on the rail and shuttle car (mover). Because of large variant of mover's weight by loading and unloading containers, the difference of each characteristic of stator modules, and a stator module's trouble etc., LMCPS (Linear Motor Conveyance Positioning System) is considered as that the system is changed its model suddenly and variously. In this paper, we will introduce the soft-computing method of a multi-step prediction control for LMCPS using DR-FNN (Dynamically-constructed Recurrent Fuzzy Neural Network). The proposed control system is used two networks for multi-step prediction. Consequently, the system has an ability to adapt for external disturbance, cogging force, force ripple, and sudden changes of itself.
Je, Sung-kwan;Jang, Hye-Won;Shin, Bok-Suk;Kim, Cheol-Ki;Jaehyun Cho;Kim, Kwang-Baek
한국지능시스템학회:학술대회논문집
/
한국퍼지및지능시스템학회 2003년도 ISIS 2003
/
pp.608-611
/
2003
Performance assessment was introduced to improvement of self-directed learning and method of assessment for differenced learning as the seventh educational curriculum is enforced. Performance assessment is overcoming limitation about problem solving ability and higher thinking abilities assessment that is problem of a written examination and get into the spotlight by way for quality of class and school normalization. But performance assessment has problems about possibilities of assessment fault by appraisal, fairness, reliability, and validity of grading, ambiguity of grading standard, difficulty about objectivity security etc. This study proposes fuzzy performance assessment system to solve problem of the conventional performance assessment. This paper presented an objective and reliable performance assessment method through fuzzy reasoning, design fuzzy membership function and define fuzzy rule analyzing factor that influence in each sacred ground of performance assessment to account principle subject. Also, performance assessment item divides by formation estimation and subject estimation and designed membership function in proposed performance assessment method. Performance assessment result that is worked through fuzzy performance assessment system can pare down burden about appraisal's fault and provide fair and reliable assessment result through grading that have correct standard and consistency to students.
A new technique is presented to construct predictive models of plasma etch processes. This was accomplished by combining a backpropagation neural network (BPNN) and a random generator (RC). The RG played a critical role to control neuron gradients in the hidden layer, The predictive model constructed in this way is referred to as a randomized BPNN (RG-BPNN). The proposed scheme was evaluated with a set of experimental plasma etch process data. The etch process was characterized by a 2$^3$ full factorial experiment. The etch responses modeled are 4, including aluminum (Al) etch rate, profile angle, Al selectivity, and do bias. Additional test data were prepared to evaluate model appropriateness. The performance of RC-BPNN was evaluated as a function of the number of hidden neurons and the range of gradient. for given range and hidden neurons, 100 sets of random neuron gradients were generated and among them one best set was selected for evaluation. Compared to the conventional BPNN, the proposed RC-BPNN demonstrated about 50% improvements in all comparisons. This illustrates that the RG-BPNN of multi-valued gradients is an effective way to considerably improve the predictive ability of current BPNN of single-valued gradient.
In this research, we propose an automatic knowledge acquisition and composite knowledge expression mechanism based on machine learning and relational database. Most of traditional approaches to develop a knowledge base and inference engine of expert systems were based on IF-THEN rules, AND-OR graph, Semantic networks, and Frame separately. However, there are some limitations such as automatic knowledge acquisition, complicate knowledge expression, expansibility of knowledge base, speed of inference, and hierarchies among rules. To overcome these limitations, many of researchers tried to develop an automatic knowledge acquisition, composite knowledge expression, and fast inference method. As a result, the adaptability of the expert systems was improved rapidly. Nonetheless, they didn't suggest a hybrid and generalized solution to support the entire process of development of expert systems. Our proposed mechanism has five advantages empirically. First, it could extract the specific domain knowledge from incomplete database based on machine learning algorithm. Second, this mechanism could reduce the number of rules efficiently according to the rule extraction mechanism used in machine learning. Third, our proposed mechanism could expand the knowledge base unlimitedly by using relational database. Fourth, the backward inference engine developed in this study, could manipulate the knowledge base stored in relational database rapidly. Therefore, the speed of inference is faster than traditional text -oriented inference mechanism. Fifth, our composite knowledge expression mechanism could reflect the traditional knowledge expression method such as IF-THEN rules, AND-OR graph, and Relationship matrix simultaneously. To validate the inference ability of our system, a real data set was adopted from a clinical diagnosis classifying the dermatology disease.
커널에 대한 모수의 조절은 서포트 벡터 기계의 일반화 능력에 영향을 준다. 이와 같이 모수들의 적절한 값을 결정하는 것은 종종 어려운 작업이 된다. 서포트 벡터 회귀에서 이와 같은 모수들의 값을 결정하기 위한 부담은 앙상블 학습을 사용함으로써 감소시킬 수 있다. 그러나 대용량의 자료에 대한 문제에 직접적으로 적용하기에는 일반적으로 시간 소모적인 방법이다. 본 논문에서 서포트 벡터 회귀의 모수 조절에 대한 부담을 감소하기 위하여 원래 자료집합을 유한개의 부분집합으로 분해하는 방법을 제안하였다. 제안하는 방법은 대용량의 자료들인 경우와 특히 불균등 자료 집합에서 효율적임을 보일 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.