• 제목/요약/키워드: intelligence information society

Search Result 3,528, Processing Time 0.093 seconds

Design Evaluation Model Based on Consumer Values: Three-step Approach from Product Attributes, Perceived Attributes, to Consumer Values (소비자 가치기반 디자인 평가 모형: 제품 속성, 인지 속성, 소비자 가치의 3단계 접근)

  • Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.57-76
    • /
    • 2017
  • Recently, consumer needs are diversifying as information technologies are evolving rapidly. A lot of IT devices such as smart phones and tablet PCs are launching following the trend of information technology. While IT devices focused on the technical advance and improvement a few years ago, the situation is changed now. There is no difference in functional aspects, so companies are trying to differentiate IT devices in terms of appearance design. Consumers also consider design as being a more important factor in the decision-making of smart phones. Smart phones have become a fashion items, revealing consumers' own characteristics and personality. As the design and appearance of the smartphone become important things, it is necessary to examine consumer values from the design and appearance of IT devices. Furthermore, it is crucial to clarify the mechanisms of consumers' design evaluation and develop the design evaluation model based on the mechanism. Since the influence of design gets continuously strong, various and many studies related to design were carried out. These studies can classify three main streams. The first stream focuses on the role of design from the perspective of marketing and communication. The second one is the studies to find out an effective and appealing design from the perspective of industrial design. The last one is to examine the consumer values created by a product design, which means consumers' perception or feeling when they look and feel it. These numerous studies somewhat have dealt with consumer values, but they do not include product attributes, or do not cover the whole process and mechanism from product attributes to consumer values. In this study, we try to develop the holistic design evaluation model based on consumer values based on three-step approach from product attributes, perceived attributes, to consumer values. Product attributes means the real and physical characteristics each smart phone has. They consist of bezel, length, width, thickness, weight and curvature. Perceived attributes are derived from consumers' perception on product attributes. We consider perceived size of device, perceived size of display, perceived thickness, perceived weight, perceived bezel (top - bottom / left - right side), perceived curvature of edge, perceived curvature of back side, gap of each part, perceived gloss and perceived screen ratio. They are factorized into six clusters named as 'Size,' 'Slimness,' 'No-Frame,' 'Roundness,' 'Screen Ratio,' and 'Looseness.' We conducted qualitative research to find out consumer values, which are categorized into two: look and feel values. We identified the values named as 'Silhouette,' 'Neatness,' 'Attractiveness,' 'Polishing,' 'Innovativeness,' 'Professionalism,' 'Intellectualness,' 'Individuality,' and 'Distinctiveness' in terms of look values. Also, we identifies 'Stability,' 'Comfortableness,' 'Grip,' 'Solidity,' 'Non-fragility,' and 'Smoothness' in terms of feel values. They are factorized into five key values: 'Sleek Value,' 'Professional Value,' 'Unique Value,' 'Comfortable Value,' and 'Solid Value.' Finally, we developed the holistic design evaluation model by analyzing each relationship from product attributes, perceived attributes, to consumer values. This study has several theoretical and practical contributions. First, we found consumer values in terms of design evaluation and implicit chain relationship from the objective and physical characteristics to the subjective and mental evaluation. That is, the model explains the mechanism of design evaluation in consumer minds. Second, we suggest a general design evaluation process from product attributes, perceived attributes to consumer values. It is an adaptable methodology not only smart phone but also other IT products. Practically, this model can support the decision-making when companies initiative new product development. It can help product designers focus on their capacities with limited resources. Moreover, if its model combined with machine learning collecting consumers' purchasing data, most preferred values, sales data, etc., it will be able to evolve intelligent design decision support system.

The Effect of Herding Behavior and Perceived Usefulness on Intention to Purchase e-Learning Content: Comparison Analysis by Purchase Experience (무리행동과 지각된 유용성이 이러닝 컨텐츠 구매의도에 미치는 영향: 구매경험에 의한 비교분석)

  • Yoo, Chul-Woo;Kim, Yang-Jin;Moon, Jung-Hoon;Choe, Young-Chan
    • Asia pacific journal of information systems
    • /
    • v.18 no.4
    • /
    • pp.105-130
    • /
    • 2008
  • Consumers of e-learning market differ from those of other markets in that they are replaced in a specific time scale. For example, e-learning contents aimed at highschool senior students cannot be consumed by a specific consumer over the designated period of time. Hence e-learning service providers need to attract new groups of students every year. Due to lack of information on products designed for continuously emerging consumers, the consumers face difficulties in making rational decisions in a short time period. Increased uncertainty of product purchase leads customers to herding behaviors to obtain information of the product from others and imitate them. Taking into consideration of these features of e-learning market, this study will focus on the online herding behavior in purchasing e-learning contents. There is no definite concept for e-learning. However, it is being discussed in a wide range of perspectives from educational engineering to management to e-business etc. Based upon the existing studies, we identify two main view-points regarding e-learning. The first defines e-learning as a concept that includes existing terminologies, such as CBT (Computer Based Training), WBT (Web Based Training), and IBT (Internet Based Training). In this view, e-learning utilizes IT in order to support professors and a part of or entire education systems. In the second perspective, e-learning is defined as the usage of Internet technology to deliver diverse intelligence and achievement enhancing solutions. In other words, only the educations that are done through the Internet and network can be classified as e-learning. We take the second definition of e-learning for our working definition. The main goal of this study is to investigate what factors affect consumer intention to purchase e-learning contents and to identify the differential impact of the factors between consumers with purchase experience and those without the experience. To accomplish the goal of this study, it focuses on herding behavior and perceived usefulness as antecedents to behavioral intention. The proposed research model in the study extends the Technology Acceptance Model by adding herding behavior and usability to take into account the unique characteristics of e-learning content market and e-learning systems use, respectively. The current study also includes consumer experience with e-learning content purchase because the previous experience is believed to affect purchasing intention when consumers buy experience goods or services. Previous studies on e-learning did not consider the characteristics of e-learning contents market and the differential impact of consumer experience on the relationship between the antecedents and behavioral intention, which is the target of this study. This study employs a survey method to empirically test the proposed research model. A survey questionnaire was developed and distributed to 629 informants. 528 responses were collected, which consist of potential customer group (n = 133) and experienced customer group (n = 395). The data were analyzed using PLS method, a structural equation modeling method. Overall, both herding behavior and perceived usefulness influence consumer intention to purchase e-learning contents. In detail, in the case of potential customer group, herding behavior has stronger effect on purchase intention than does perceived usefulness. However, in the case of shopping-experienced customer group, perceived usefulness has stronger effect than does herding behavior. In sum, the results of the analysis show that with regard to purchasing experience, perceived usefulness and herding behavior had differential effects upon the purchase of e-learning contents. As a follow-up analysis, the interaction effects of the number of purchase transaction and herding behavior/perceived usefulness on purchase intention were investigated. The results show that there are no interaction effects. This study contributes to the literature in a couple of ways. From a theoretical perspective, this study examined and showed evidence that the characteristics of e-learning market such as continuous renewal of consumers and thus high uncertainty and individual experiences are important factors to be considered when the purchase intention of e-learning content is studied. This study can be used as a basis for future studies on e-learning success. From a practical perspective, this study provides several important implications on what types of marketing strategies e-learning companies need to build. The bottom lines of these strategies include target group attraction, word-of-mouth management, enhancement of web site usability quality, etc. The limitations of this study are also discussed for future studies.

A Methodology for Extracting Shopping-Related Keywords by Analyzing Internet Navigation Patterns (인터넷 검색기록 분석을 통한 쇼핑의도 포함 키워드 자동 추출 기법)

  • Kim, Mingyu;Kim, Namgyu;Jung, Inhwan
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.123-136
    • /
    • 2014
  • Recently, online shopping has further developed as the use of the Internet and a variety of smart mobile devices becomes more prevalent. The increase in the scale of such shopping has led to the creation of many Internet shopping malls. Consequently, there is a tendency for increasingly fierce competition among online retailers, and as a result, many Internet shopping malls are making significant attempts to attract online users to their sites. One such attempt is keyword marketing, whereby a retail site pays a fee to expose its link to potential customers when they insert a specific keyword on an Internet portal site. The price related to each keyword is generally estimated by the keyword's frequency of appearance. However, it is widely accepted that the price of keywords cannot be based solely on their frequency because many keywords may appear frequently but have little relationship to shopping. This implies that it is unreasonable for an online shopping mall to spend a great deal on some keywords simply because people frequently use them. Therefore, from the perspective of shopping malls, a specialized process is required to extract meaningful keywords. Further, the demand for automating this extraction process is increasing because of the drive to improve online sales performance. In this study, we propose a methodology that can automatically extract only shopping-related keywords from the entire set of search keywords used on portal sites. We define a shopping-related keyword as a keyword that is used directly before shopping behaviors. In other words, only search keywords that direct the search results page to shopping-related pages are extracted from among the entire set of search keywords. A comparison is then made between the extracted keywords' rankings and the rankings of the entire set of search keywords. Two types of data are used in our study's experiment: web browsing history from July 1, 2012 to June 30, 2013, and site information. The experimental dataset was from a web site ranking site, and the biggest portal site in Korea. The original sample dataset contains 150 million transaction logs. First, portal sites are selected, and search keywords in those sites are extracted. Search keywords can be easily extracted by simple parsing. The extracted keywords are ranked according to their frequency. The experiment uses approximately 3.9 million search results from Korea's largest search portal site. As a result, a total of 344,822 search keywords were extracted. Next, by using web browsing history and site information, the shopping-related keywords were taken from the entire set of search keywords. As a result, we obtained 4,709 shopping-related keywords. For performance evaluation, we compared the hit ratios of all the search keywords with the shopping-related keywords. To achieve this, we extracted 80,298 search keywords from several Internet shopping malls and then chose the top 1,000 keywords as a set of true shopping keywords. We measured precision, recall, and F-scores of the entire amount of keywords and the shopping-related keywords. The F-Score was formulated by calculating the harmonic mean of precision and recall. The precision, recall, and F-score of shopping-related keywords derived by the proposed methodology were revealed to be higher than those of the entire number of keywords. This study proposes a scheme that is able to obtain shopping-related keywords in a relatively simple manner. We could easily extract shopping-related keywords simply by examining transactions whose next visit is a shopping mall. The resultant shopping-related keyword set is expected to be a useful asset for many shopping malls that participate in keyword marketing. Moreover, the proposed methodology can be easily applied to the construction of special area-related keywords as well as shopping-related ones.

User-Perspective Issue Clustering Using Multi-Layered Two-Mode Network Analysis (다계층 이원 네트워크를 활용한 사용자 관점의 이슈 클러스터링)

  • Kim, Jieun;Kim, Namgyu;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.93-107
    • /
    • 2014
  • In this paper, we report what we have observed with regard to user-perspective issue clustering based on multi-layered two-mode network analysis. This work is significant in the context of data collection by companies about customer needs. Most companies have failed to uncover such needs for products or services properly in terms of demographic data such as age, income levels, and purchase history. Because of excessive reliance on limited internal data, most recommendation systems do not provide decision makers with appropriate business information for current business circumstances. However, part of the problem is the increasing regulation of personal data gathering and privacy. This makes demographic or transaction data collection more difficult, and is a significant hurdle for traditional recommendation approaches because these systems demand a great deal of personal data or transaction logs. Our motivation for presenting this paper to academia is our strong belief, and evidence, that most customers' requirements for products can be effectively and efficiently analyzed from unstructured textual data such as Internet news text. In order to derive users' requirements from textual data obtained online, the proposed approach in this paper attempts to construct double two-mode networks, such as a user-news network and news-issue network, and to integrate these into one quasi-network as the input for issue clustering. One of the contributions of this research is the development of a methodology utilizing enormous amounts of unstructured textual data for user-oriented issue clustering by leveraging existing text mining and social network analysis. In order to build multi-layered two-mode networks of news logs, we need some tools such as text mining and topic analysis. We used not only SAS Enterprise Miner 12.1, which provides a text miner module and cluster module for textual data analysis, but also NetMiner 4 for network visualization and analysis. Our approach for user-perspective issue clustering is composed of six main phases: crawling, topic analysis, access pattern analysis, network merging, network conversion, and clustering. In the first phase, we collect visit logs for news sites by crawler. After gathering unstructured news article data, the topic analysis phase extracts issues from each news article in order to build an article-news network. For simplicity, 100 topics are extracted from 13,652 articles. In the third phase, a user-article network is constructed with access patterns derived from web transaction logs. The double two-mode networks are then merged into a quasi-network of user-issue. Finally, in the user-oriented issue-clustering phase, we classify issues through structural equivalence, and compare these with the clustering results from statistical tools and network analysis. An experiment with a large dataset was performed to build a multi-layer two-mode network. After that, we compared the results of issue clustering from SAS with that of network analysis. The experimental dataset was from a web site ranking site, and the biggest portal site in Korea. The sample dataset contains 150 million transaction logs and 13,652 news articles of 5,000 panels over one year. User-article and article-issue networks are constructed and merged into a user-issue quasi-network using Netminer. Our issue-clustering results applied the Partitioning Around Medoids (PAM) algorithm and Multidimensional Scaling (MDS), and are consistent with the results from SAS clustering. In spite of extensive efforts to provide user information with recommendation systems, most projects are successful only when companies have sufficient data about users and transactions. Our proposed methodology, user-perspective issue clustering, can provide practical support to decision-making in companies because it enhances user-related data from unstructured textual data. To overcome the problem of insufficient data from traditional approaches, our methodology infers customers' real interests by utilizing web transaction logs. In addition, we suggest topic analysis and issue clustering as a practical means of issue identification.

Determinants of Mobile Application Use: A Study Focused on the Correlation between Application Categories (모바일 앱 사용에 영향을 미치는 요인에 관한 연구: 앱 카테고리 간 상관관계를 중심으로)

  • Park, Sangkyu;Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.157-176
    • /
    • 2016
  • For a long time, mobile phone had a sole function of communication. Recently however, abrupt innovations in technology allowed extension of the sphere in mobile phone activities. Development of technology enabled realization of almost computer-like environment even on a very small device. Such advancement yielded several forms of new high-tech devices such as smartphone and tablet PC, which quickly proliferated. Simultaneously with the diffusion of the mobile devices, mobile applications for those devices also prospered and soon became deeply penetrated in consumers' daily lives. Numerous mobile applications have been released in app stores yielding trillions of cumulative downloads. However, a big majority of the applications are disregarded from consumers. Even after the applications are purchased, they do not survive long in consumers' mobile devices and are soon abandoned. Nevertheless, it is imperative for both app developers and app-store operators to understand consumer behaviors and to develop marketing strategies aiming to make sustainable business by first increasing sales of mobile applications and by also designing surviving strategy for applications. Therefore, this research analyzes consumers' mobile application usage behavior in a frame of substitution/supplementary of application categories and several explanatory variables. Considering that consumers of mobile devices use multiple apps simultaneously, this research adopts multivariate probit models to explain mobile application usage behavior and to derive correlation between categories of applications for observing substitution/supplementary of application use. The research adopts several explanatory variables including sociodemographic data, user experiences of purchased applications that reflect future purchasing behavior of paid applications as well as consumer attitudes toward marketing efforts, variables representing consumer attitudes toward rating of the app and those representing consumer attitudes toward app-store promotion efforts (i.e., top developer badge and editor's choice badge). Results of this study can be explained in hedonic and utilitarian framework. Consumers who use hedonic applications, such as those of game and entertainment-related, are of young age with low education level. However, consumers who are old and have received higher education level prefer utilitarian application category such as life, information etc. There are disputable arguments over whether the users of SNS are hedonic or utilitarian. In our results, consumers who are younger and those with higher education level prefer using SNS category applications, which is in a middle of utilitarian and hedonic results. Also, applications that are directly related to tangible assets, such as banking, stock and mobile shopping, are only negatively related to experience of purchasing of paid app, meaning that consumers who put weights on tangible assets do not prefer buying paid application. Regarding categories, most correlations among categories are significantly positive. This is because someone who spend more time on mobile devices tends to use more applications. Game and entertainment category shows significant and positive correlation; however, there exists significantly negative correlation between game and information, as well as game and e-commerce categories of applications. Meanwhile, categories of game and SNS as well as game and finance have shown no significant correlations. This result clearly shows that mobile application usage behavior is quite clearly distinguishable - that the purpose of using mobile devices are polarized into utilitarian and hedonic purpose. This research proves several arguments that can only be explained by second-hand real data, not by survey data, and offers behavioral explanations of mobile application usage in consumers' perspectives. This research also shows substitution/supplementary patterns of consumer application usage, which then explain consumers' mobile application usage behaviors. However, this research has limitations in some points. Classification of categories itself is disputable, for classification is diverged among several studies. Therefore, there is a possibility of change in results depending on the classification. Lastly, although the data are collected in an individual application level, we reduce its observation into an individual level. Further research will be done to resolve these limitations.

Job Preference Analysis and Job Matching System Development for the Middle Aged Class (중장년층 일자리 요구사항 분석 및 인력 고용 매칭 시스템 개발)

  • Kim, Seongchan;Jang, Jincheul;Kim, Seong Jung;Chin, Hyojin;Yi, Mun Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.247-264
    • /
    • 2016
  • With the rapid acceleration of low-birth rate and population aging, the employment of the neglected groups of people including the middle aged class is a crucial issue in South Korea. In particular, in the 2010s, the number of the middle aged who want to find a new job after retirement age is significantly increasing with the arrival of the retirement time of the baby boom generation (born 1955-1963). Despite the importance of matching jobs to this emerging middle aged class, private job portals as well as the Korean government do not provide any online job service tailored for them. A gigantic amount of job information is available online; however, the current recruiting systems do not meet the demand of the middle aged class as their primary targets are young workers. We are in dire need of a specially designed recruiting system for the middle aged. Meanwhile, when users are searching the desired occupations on the Worknet website, provided by the Korean Ministry of Employment and Labor, users are experiencing discomfort to search for similar jobs because Worknet is providing filtered search results on the basis of exact matches of a preferred job code. Besides, according to our Worknet data analysis, only about 24% of job seekers had landed on a job position consistent with their initial preferred job code while the rest had landed on a position different from their initial preference. To improve the situation, particularly for the middle aged class, we investigate a soft job matching technique by performing the following: 1) we review a user behavior logs of Worknet, which is a public job recruiting system set up by the Korean government and point out key system design implications for the middle aged. Specifically, we analyze the job postings that include preferential tags for the middle aged in order to disclose what types of jobs are in favor of the middle aged; 2) we develope a new occupation classification scheme for the middle aged, Korea Occupation Classification for the Middle-aged (KOCM), based on the similarity between jobs by reorganizing and modifying a general occupation classification scheme. When viewed from the perspective of job placement, an occupation classification scheme is a way to connect the enterprises and job seekers and a basic mechanism for job placement. The key features of KOCM include establishing the Simple Labor category, which is the most requested category by enterprises; and 3) we design MOMA (Middle-aged Occupation Matching Algorithm), which is a hybrid job matching algorithm comprising constraint-based reasoning and case-based reasoning. MOMA incorporates KOCM to expand query to search similar jobs in the database. MOMA utilizes cosine similarity between user requirement and job posting to rank a set of postings in terms of preferred job code, salary, distance, and job type. The developed system using MOMA demonstrates about 20 times of improvement over the hard matching performance. In implementing the algorithm for a web-based application of recruiting system for the middle aged, we also considered the usability issue of making the system easier to use, which is especially important for this particular class of users. That is, we wanted to improve the usability of the system during the job search process for the middle aged users by asking to enter only a few simple and core pieces of information such as preferred job (job code), salary, and (allowable) distance to the working place, enabling the middle aged to find a job suitable to their needs efficiently. The Web site implemented with MOMA should be able to contribute to improving job search of the middle aged class. We also expect the overall approach to be applicable to other groups of people for the improvement of job matching results.

A Study on Design of Agent based Nursing Records System in Attending System (에이전트기반 개방병원 간호기록시스템 설계에 관한 연구)

  • Kim, Kyoung-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.73-94
    • /
    • 2010
  • The attending system is a medical system that allows doctors in clinics to use the extra equipment in hospitals-beds, laboratory, operating room, etc-for their patient's care under a contract between the doctors and hospitals. Therefore, the system is very beneficial in terms of the efficiency of the usage of medical resources. However, it is necessary to develop a strong support system to strengthen its weaknesses and supplement its merits. If doctors use hospital beds under the attending system of hospitals, they would be able to check a patient's condition often and provide them with nursing care services. However, the current attending system lacks delivery and assistance support. Thus, for the successful performance of the attending system, a networking system should be developed to facilitate communication between the doctors and nurses. In particular, the nursing records in the attending system could help doctors monitor the patient's condition and provision of nursing care services. A nursing record is the formal documentation associated with nursing care. It is merely a data repository that helps nurses to track their activities; nursing records thus represent a resource of primary information that can be reused. In order to maximize their usefulness, nursing records have been introduced as part of computerized patient records. However, nursing records are internal data that are not disclosed by hospitals. Moreover, the lack of standardization of the record list makes it difficult to share nursing records. Under the attending system, nurses would want to minimize the amount of effort they have to put in for the maintenance of additional records. Hence, they would try to maintain the current level of nursing records in the form of record lists and record attributes, while doctors would require more detailed and real-time information about their patients in order to monitor their condition. Therefore, this study developed a system for assisting in the maintenance and sharing of the nursing records under the attending system. In contrast to previous research on the functionality of computer-based nursing records, we have emphasized the practical usefulness of nursing records from the viewpoint of the actual implementation of the attending system. We suggested that nurses could design a nursing record dictionary for their convenience, and that doctors and nurses could confirm the definitions that they looked up in the dictionary through negotiations with intelligent agents. Such an agent-based system could facilitate networking among medical institutes. Multi-agent systems are a widely accepted paradigm for the distribution and sharing of computation workloads in the scientific community. Agent-based systems have been developed with differences in functional cooperation, coordination, and negotiation. To increase such communication, a framework for a multi-agent based system is proposed in this study. The agent-based approach is useful for developing a system that promotes trade-offs between transactions involving multiple attributes. A brief summary of our contributions follows. First, we propose an efficient and accurate utility representation and acquisition mechanism based on a preference scale while minimizing user interactions with the agent. Trade-offs between various transaction attributes can also be easily computed. Second, by providing a multi-attribute negotiation framework based on the attribute utility evaluation mechanism, we allow both the doctors in charge and nurses to negotiate over various transaction attributes in the nursing record lists that are defined by the latter. Third, we have designed the architecture of the nursing record management server and a system of agents that provides support to the doctors and nurses with regard to the framework and mechanisms proposed above. A formal protocol has also been developed to create and control the communication required for negotiations. We verified the realization of the system by developing a web-based prototype. The system was implemented using ASP and IIS5.1.

A Study on the Effect of Using Sentiment Lexicon in Opinion Classification (오피니언 분류의 감성사전 활용효과에 대한 연구)

  • Kim, Seungwoo;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.133-148
    • /
    • 2014
  • Recently, with the advent of various information channels, the number of has continued to grow. The main cause of this phenomenon can be found in the significant increase of unstructured data, as the use of smart devices enables users to create data in the form of text, audio, images, and video. In various types of unstructured data, the user's opinion and a variety of information is clearly expressed in text data such as news, reports, papers, and various articles. Thus, active attempts have been made to create new value by analyzing these texts. The representative techniques used in text analysis are text mining and opinion mining. These share certain important characteristics; for example, they not only use text documents as input data, but also use many natural language processing techniques such as filtering and parsing. Therefore, opinion mining is usually recognized as a sub-concept of text mining, or, in many cases, the two terms are used interchangeably in the literature. Suppose that the purpose of a certain classification analysis is to predict a positive or negative opinion contained in some documents. If we focus on the classification process, the analysis can be regarded as a traditional text mining case. However, if we observe that the target of the analysis is a positive or negative opinion, the analysis can be regarded as a typical example of opinion mining. In other words, two methods (i.e., text mining and opinion mining) are available for opinion classification. Thus, in order to distinguish between the two, a precise definition of each method is needed. In this paper, we found that it is very difficult to distinguish between the two methods clearly with respect to the purpose of analysis and the type of results. We conclude that the most definitive criterion to distinguish text mining from opinion mining is whether an analysis utilizes any kind of sentiment lexicon. We first established two prediction models, one based on opinion mining and the other on text mining. Next, we compared the main processes used by the two prediction models. Finally, we compared their prediction accuracy. We then analyzed 2,000 movie reviews. The results revealed that the prediction model based on opinion mining showed higher average prediction accuracy compared to the text mining model. Moreover, in the lift chart generated by the opinion mining based model, the prediction accuracy for the documents with strong certainty was higher than that for the documents with weak certainty. Most of all, opinion mining has a meaningful advantage in that it can reduce learning time dramatically, because a sentiment lexicon generated once can be reused in a similar application domain. Additionally, the classification results can be clearly explained by using a sentiment lexicon. This study has two limitations. First, the results of the experiments cannot be generalized, mainly because the experiment is limited to a small number of movie reviews. Additionally, various parameters in the parsing and filtering steps of the text mining may have affected the accuracy of the prediction models. However, this research contributes a performance and comparison of text mining analysis and opinion mining analysis for opinion classification. In future research, a more precise evaluation of the two methods should be made through intensive experiments.

Case Study on the Enterprise Microblog Usage: Focusing on Knowledge Management Strategy (기업용 마이크로블로그의 사용행태에 대한 사례연구: 지식경영전략을 중심으로)

  • Kang, Min Su;Park, Arum;Lee, Kyoung-Jun
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.47-63
    • /
    • 2015
  • As knowledge is paid attention as a new production factor that generates added value, studies continue to apply knowledge management to business environment. In addition, as ICT (Information Communication Technology) was engrafted in business environment, it leads to increasing task efficiency and productivity of individual workers. Accordingly, the way that a business achieves its goal has changed to one in which its individual members are willing to take part in the organization and share information to create new values (Han, 2003) and studies for the system and service to support such transition are carrying out. Of late, a new concept called 'Enterprise 2.0' newly appears. It is the extension of Wen 2.0 and its technology, which focus on participation, sharing and openness, to the work environment of a business (Jung, 2013). Enterprise 2.0 is being used as a collaborative tool to prop up individual creativity and group brain power by combining Web 2.0 technologies such as blog, Wiki, RSS and tag with business software (McAfee, 2006). As Tweeter gets popular, Enterprise Microblog (EMB), which is an example of Enterprise 2.0 for business, has been developed as equivalent to Tweeter in business circle and SaaS (Software as a Service) such as Yammer was introduced The studies of EMB mainly focus on demonstrating its usability in terms of intra-firm communication and knowledge management. However existing studies lean too much towards large-sized companies and certain departments, rather than a company as a whole. Therefore, few studies have been conducted on small and medium-sized companies that have difficulty preparing separate resources and supplying exclusive workforce to introduce knowledge management. In this respect, the present study placed its analytic focus on small-sized companies actually equipped with EMB to know how they use it. And, based on the findings, this study examined their knowledge management strategies for EMB from the point of codification and personalization. Hypothesis -"as a company grows, it shifts EMB strategy from codification to personalization'- was established on the basis of reviewing precedent studies and literature. To demonstrate the hypothesis, this study analyzed the usage of EMB by small companies that have used it from foundation. For case study, the duration of the use was divided into 2 spans and longitudinal analysis was employed to examine the contents of the blogs. Using the key findings of the analysis, this study is aimed to propose practical implications for the operation of knowledge management of small-sized company and the suitable application of knowledge management system for operation Knowledge Management Strategy can be classified by codification strategy and personalization strategy (Hansen et. al., 1999), and how to manage the two strategies were always studied. Also, current studies regarding the knowledge management strategy were targeted mostly for major companies, resulting in lack of studies in how it can be applied on SMEs. This research, with the knowledge management strategy suited for SMEs, sets an Enterprise Microblog (EMB), and with the EMB applied on SMEs' Knowledge Management Strategy, it is reviewed on the perspective of SMEs' Codification and Personalization Strategies. Through the advanced research regarding Knowledge Management Strategy and EMB, the hypothesis is set that "Depending on the development of the company, the main application of EMB alters from Codification Strategy to Personalization Strategy". To check the hypothesis, SME that have used the EMB called 'Yammer' was analyzed from the date of their foundation until today. The case study has implemented longitudinal analysis which divides the period when the EMBs were used into three stages and analyzes the contents. As the result of the study, this suggests a substantial implication regarding the application of Knowledge Management Strategy and its Knowledge Management System that is suitable for SME.

Improving Performance of Recommendation Systems Using Topic Modeling (사용자 관심 이슈 분석을 통한 추천시스템 성능 향상 방안)

  • Choi, Seongi;Hyun, Yoonjin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.101-116
    • /
    • 2015
  • Recently, due to the development of smart devices and social media, vast amounts of information with the various forms were accumulated. Particularly, considerable research efforts are being directed towards analyzing unstructured big data to resolve various social problems. Accordingly, focus of data-driven decision-making is being moved from structured data analysis to unstructured one. Also, in the field of recommendation system, which is the typical area of data-driven decision-making, the need of using unstructured data has been steadily increased to improve system performance. Approaches to improve the performance of recommendation systems can be found in two aspects- improving algorithms and acquiring useful data with high quality. Traditionally, most efforts to improve the performance of recommendation system were made by the former approach, while the latter approach has not attracted much attention relatively. In this sense, efforts to utilize unstructured data from variable sources are very timely and necessary. Particularly, as the interests of users are directly connected with their needs, identifying the interests of the user through unstructured big data analysis can be a crew for improving performance of recommendation systems. In this sense, this study proposes the methodology of improving recommendation system by measuring interests of the user. Specially, this study proposes the method to quantify interests of the user by analyzing user's internet usage patterns, and to predict user's repurchase based upon the discovered preferences. There are two important modules in this study. The first module predicts repurchase probability of each category through analyzing users' purchase history. We include the first module to our research scope for comparing the accuracy of traditional purchase-based prediction model to our new model presented in the second module. This procedure extracts purchase history of users. The core part of our methodology is in the second module. This module extracts users' interests by analyzing news articles the users have read. The second module constructs a correspondence matrix between topics and news articles by performing topic modeling on real world news articles. And then, the module analyzes users' news access patterns and then constructs a correspondence matrix between articles and users. After that, by merging the results of the previous processes in the second module, we can obtain a correspondence matrix between users and topics. This matrix describes users' interests in a structured manner. Finally, by using the matrix, the second module builds a model for predicting repurchase probability of each category. In this paper, we also provide experimental results of our performance evaluation. The outline of data used our experiments is as follows. We acquired web transaction data of 5,000 panels from a company that is specialized to analyzing ranks of internet sites. At first we extracted 15,000 URLs of news articles published from July 2012 to June 2013 from the original data and we crawled main contents of the news articles. After that we selected 2,615 users who have read at least one of the extracted news articles. Among the 2,615 users, we discovered that the number of target users who purchase at least one items from our target shopping mall 'G' is 359. In the experiments, we analyzed purchase history and news access records of the 359 internet users. From the performance evaluation, we found that our prediction model using both users' interests and purchase history outperforms a prediction model using only users' purchase history from a view point of misclassification ratio. In detail, our model outperformed the traditional one in appliance, beauty, computer, culture, digital, fashion, and sports categories when artificial neural network based models were used. Similarly, our model outperformed the traditional one in beauty, computer, digital, fashion, food, and furniture categories when decision tree based models were used although the improvement is very small.