• Title/Summary/Keyword: integrating sphere

Search Result 68, Processing Time 0.042 seconds

Drift Forces on a Freely-Floating Sphere in Water of Finite Depth(I) -Momentum Theorem Method- (유한수심(有限水深)의 해상(海上)에서 규칙파(規則波)에 놓인 구(球)에 작용(作用)하는 표류력(漂流力)(I) -운동량(運動量) 이론(理論) 방법(方法)-)

  • H.S.,Choi;T.M.,Oh
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.20 no.4
    • /
    • pp.33-40
    • /
    • 1983
  • The drift force acting on a freely-floating sphere in water of finite depth is studied within the framework of a linear potential theory. A velocity potential describing fluid motion is determined by distribution pulsating sources and dipoles on the immersed surface of the sphere. Upon knowing values of the potential, hydrodynamic forces are evaluated by integrating pressures over the immersed surface of the sphere. The motion response of the sphere in water of finite depth is obtained by solving the equation of motion. From these results, the drift force on the sphere is evaluated by the momentum theorem, in which a far-field velocity potential is utilized in forms of Kochin function. The drift force coefficient Cdr of a fixed sphere increases monotononically with non-dimensional wave frequency ${\sigma}a$. On the other hand, in freely-floating case, the Cdr has a peak value at ${\sigma}a$ of heave resonance. The magnitude of the drift force coefficient Cdr in the case of finite depth is different form that for deep water, but the general tendency seems to be similar in both cases. It is to note that Cdr is greater than 1.0 when non-dimensional water depth d/a is 1.5 in the case of freely-floating sphere.

  • PDF

Optic Characteristics Comparison and Analysis of SMD Type Y/G/W HB LED (SMD형 Y/G/W HB LED의 광특성 비교분식)

  • 황명근;허창수;서유진
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.4
    • /
    • pp.15-21
    • /
    • 2004
  • The optical characteristics; luminous flux, correlated color temperature, and CIE -chromaticity coordinate etc., of HB LED(high brightness light emitting diode) of yellow/green/white SMD(surface mounted device) type were tested with integrating sphere photometer and monochromator, and the results were comparatively evaluated And, for the white LED, color rendering indices were considered to analyze.

The Measurement Methods of a Large Light Source Using the Integrating Sphere (적분구를 이용한 대형광원의 측정방법)

  • Hwang, Myung-Keun;Lee, Se-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.12
    • /
    • pp.585-587
    • /
    • 2005
  • In this paper, We studied two methods to measure optical characteristics of an electrodeless light source using the integrating sphere(diameter 1.5m). One is to use a center measurement method and the other is to use a side measurement method. As a result of analysis, a side measurement methode without auxiliary lamp is almost similar against a center measurement with auxiliary lamp to reduce a measurement of an error for luminous flux, luminous efficacy and spectral distribution etc. Therefore, Sample which cannot measured by reason of big size and heavy weight can be measured by a side measurement method.

A Development of Fast Speed Monte-Carlo Ray Tracing Method and Study of the Characteristics of an Absolute Reflectometer (연산 속도가 개선된 몬테카를로 광선 추적 알고리즘 개발 및 이를 활용한 절대 반사율 측정 장치 특성 분석에 관한 연구)

  • Kim, Han-Pil;Byun, Seok-Joo;Jeon, Min Yong;Park, Jong-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.7-14
    • /
    • 2014
  • We proposed a new algorithm to improve the calculation speed of forward ray tracing method which was quite a problem in conventional Monte Carlo algorithm. To verify the accuracy and the effect of improving calculation speed, we directly compared integrating sphere characteristics with conventional ray tracing algorithm under the same condition which was referred in a reference paper. By applying new algorithm to an absolute reflectometer, we calculated the degree of errors which were caused by baffle and port characteristics to find optimal system design condition.

Calibration of the Pyranometer Sensitivity Using the Integrating Sphere

  • Kim, Bu-Yo;Lee, Kyu-Tae;Zo, Il-Sung;Lee, Sang-Ho;Jung, Hyun-Seok;Rim, Se-Hun;Jang, Jeong-Pil
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • v.54 no.4
    • /
    • pp.639-648
    • /
    • 2018
  • The pyranometer for observing the solar radiation reaching the surface of the earth is manufactured by various companies around the world. The sensitivity of the pyranometer at the observatory is required to be properly controlled based on the reference value of the World Radiometric Center (WRC) and the observatory environment; otherwise, the observational data may be subject to a large error. Since the sensitivity of the pyranometer can be calibrated in an indoor or outdoor calibration, this study used a CSTMUSS-4000C Integrating Sphere by Labsphere Inc. (USA) to calibrate the sensitivity of CMP22 pyranometer by Kipp&Zonen Inc. (Netherlands). Consequently, the factory sensitivity of CMP22 was corrected from $8.68{\mu}V{\cdot}(Wm^{-2})^{-1}$ to $8.98{\mu}V{\cdot}(Wm^{-2})^{-1}$, and the result from the outdoor calibration according to the observatory environment was $8.90{\mu}V{\cdot}(Wm^{-2})^{-1}$. After the indoor calibration of the pyranometer sensitivity, the root mean square error (RMSE) of the observational data at the observatory on a clear day without clouds (July 13, 2017) was $7.11Wm^{-2}$ in comparison to the reference pyranometer. After the outdoor calibration of the pyranometer sensitivity based on these results, the RMSE of the observational data was $1.74Wm^{-2}$ on the same day. Periodic inspections are required because the decrease of sensitivity over time is inevitable in the pyranometer data produced at the observatory. The initial sensitivity after indoor calibration ($8.98{\mu}V{\cdot}(Wm^{-2})^{-1}$) is important, and the sensitivity after outdoor calibration ($8.90{\mu}V{\cdot}(Wm^{-2})^{-1})$ can be compared to the data at the Baseline Surface Radiation Network (BSRN) or can be used for various studies and daily applications.

On the Motion Characteristics of a Freely-Floating Sphere in a Water of Finite Depth (유한수심(有限水深)의 해상(海上)에서 규칙파(規則波)에 놓인 구(球)의 운동특성(運動特性))

  • Hang-Shoon,Choi;Sung-Kyun,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.1
    • /
    • pp.23-32
    • /
    • 1982
  • Herein the motion of a freely-floating sphere in a water of finite depth is analysed within the framework of a linear potential theory. A velocity potential describing fluid motion is generated by distributing pulsating sources and dipoles on the immersed surface of the sphere, without introducing an inner flow model. The potential becomes the solution of an integral equation of Fredholm's second type. In the light of the vertical axisymmetry of the flow, surface integrals reduce to line integrals, which are approximated by summation of the products of the integrand and the length of segments along the contour. Following this computational scheme the diffraction potential and the radiation potential are determined from the same algorithm of solving a set of simultaneous linear equations. Upon knowing values of the potentials hydrodynamic forces such as added mass, hydrodynamic damping and wave exciting forces are evaluated by the integrating pressure over the immersed surface of the sphere. It is found in the case of finite water depth that the hydrodynamic forces are much different from the corresponding ones in deep water. Accordingly motion response of the sphere in a water of finite depth displays a particular behavior both in a amplitude and phase.

  • PDF

Assessment of the radiant emittance of damaged/contaminated dental light-curing tips by spectrophotometric methods

  • Abdulrahman A. Balhaddad;Isadora Garcia;Fabricio Collares;Cristopher M. Felix;Nisha Ganesh;Qoot Alkabashi;Ward Massei;Howard Strassler;Mary Anne Melo
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.4
    • /
    • pp.55.1-55.12
    • /
    • 2020
  • Objectives: This study investigated the effects of physically damaged and resin-contaminated tips on radiant emittance, comparing them with new undamaged, non-contaminated tips using 3 pieces of spectrophotometric laboratory equipment. Materials and Methods: Nine tips with damage and/or resin contaminants from actual clinical situations were compared with a new tip without damage or contamination (control group). The radiant emittance was recorded using 3 spectrophotometric methods: a laboratory-grade thermopile, a laboratory-grade integrating sphere, and a portable light collector (checkMARC). Results: A significant difference between the laboratory-grade thermopile and the laboratory-grade integrating sphere was found when the radiant emittance values of the control or damaged/contaminated tips were investigated (p < 0.05), but both methods were comparable to checkMARC (p > 0.05). Regardless of the method used to quantify the light output, the mean radiant emittance values of the damaged/contaminated tips were significantly lower than those of the control (p < 0.05). The beam profile of the damaged/contaminated tips was less homogeneous than that of the control. Conclusions: Damaged/contaminated tips can reduce the radiant emittance output and the homogeneity of the beam, which may affect the energy delivered to composite restorations. The checkMARC spectrophotometer device can be used in dental offices, as it provided values close to those produced by a laboratory-grade integrated sphere spectrophotometer. Dentists should assess the radiant emittance of their light-curing units to ensure optimal curing in photoactivated, resin-based materials.