DOI QR코드

DOI QR Code

Calibration of the Pyranometer Sensitivity Using the Integrating Sphere

  • Kim, Bu-Yo (Department of Atmospheric and Environmental Sciences, Gangneung-Wonju National University) ;
  • Lee, Kyu-Tae (Department of Atmospheric and Environmental Sciences, Gangneung-Wonju National University) ;
  • Zo, Il-Sung (Research Institute for Radiation-Satellite, Gangneung-Wonju National University) ;
  • Lee, Sang-Ho (Department of Atmospheric and Environmental Sciences, Gangneung-Wonju National University) ;
  • Jung, Hyun-Seok (Department of Atmospheric and Environmental Sciences, Gangneung-Wonju National University) ;
  • Rim, Se-Hun (Department of Atmospheric and Environmental Sciences, Gangneung-Wonju National University) ;
  • Jang, Jeong-Pil (Department of Atmospheric and Environmental Sciences, Gangneung-Wonju National University)
  • Received : 2017.08.27
  • Accepted : 2018.04.21
  • Published : 2018.11.30

Abstract

The pyranometer for observing the solar radiation reaching the surface of the earth is manufactured by various companies around the world. The sensitivity of the pyranometer at the observatory is required to be properly controlled based on the reference value of the World Radiometric Center (WRC) and the observatory environment; otherwise, the observational data may be subject to a large error. Since the sensitivity of the pyranometer can be calibrated in an indoor or outdoor calibration, this study used a CSTMUSS-4000C Integrating Sphere by Labsphere Inc. (USA) to calibrate the sensitivity of CMP22 pyranometer by Kipp&Zonen Inc. (Netherlands). Consequently, the factory sensitivity of CMP22 was corrected from $8.68{\mu}V{\cdot}(Wm^{-2})^{-1}$ to $8.98{\mu}V{\cdot}(Wm^{-2})^{-1}$, and the result from the outdoor calibration according to the observatory environment was $8.90{\mu}V{\cdot}(Wm^{-2})^{-1}$. After the indoor calibration of the pyranometer sensitivity, the root mean square error (RMSE) of the observational data at the observatory on a clear day without clouds (July 13, 2017) was $7.11Wm^{-2}$ in comparison to the reference pyranometer. After the outdoor calibration of the pyranometer sensitivity based on these results, the RMSE of the observational data was $1.74Wm^{-2}$ on the same day. Periodic inspections are required because the decrease of sensitivity over time is inevitable in the pyranometer data produced at the observatory. The initial sensitivity after indoor calibration ($8.98{\mu}V{\cdot}(Wm^{-2})^{-1}$) is important, and the sensitivity after outdoor calibration ($8.90{\mu}V{\cdot}(Wm^{-2})^{-1})$ can be compared to the data at the Baseline Surface Radiation Network (BSRN) or can be used for various studies and daily applications.

Keywords

Acknowledgement

Supported by : Korea Meteorological Administration

References

  1. Agugiaro, G., Nex, F., Remondino, F., De Filippi, R., Droghetti, S., Furlanello, C.: Solar radiation estimation on building roofs and web-based solar cadastre. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 1, 177-182 (2012)
  2. Aradottir, A.L., Thorgeirsson, H., McCaughey, J.H., Strachan, I.B., Robertson, A.: Establishment of a black cottonwood plantation on an exposed site in Iceland: plant growth and site energy balance. Agric. For. Meteorol. 84(1), 1-9 (1997) https://doi.org/10.1016/S0168-1923(96)02370-2
  3. Beaubien, D.J., Bisberg, A., Beaubien, A.F.: Investigations in pyranometer design. J. Atmos. Ocean. Technol. 15(3), 677-686 (1998) https://doi.org/10.1175/1520-0426(1998)015<0677:IIPD>2.0.CO;2
  4. Black, K., Davis, P., Lynch, P., Jones, M., McGettigan, M., Osborne, B.: Long-term trends in solar irradiance in Ireland and their potential effects on gross primary productivity. Agric. For. Meteorol. 141(2), 118-132 (2006) https://doi.org/10.1016/j.agrformet.2006.09.005
  5. Bush, B.C., Valero, F.P., Simpson, A.S., Bignone, L.: Characterization of thermal effects in pyranometers: a data correction algorithm for improved measurement of surface insolation. J. Atmos. Ocean. Technol. 17(2), 165-175 (2000) https://doi.org/10.1175/1520-0426(2000)017<0165:COTEIP>2.0.CO;2
  6. Campbell Scientific: EPPLEY PSP: Precision spectral pyranometer instruction manual. [Available online at http://s.campbellsci.com/documents/au/manuals/psp.pdf] (1992). Accessed March 2017
  7. Cohen, P., Potchter, O., Matzarakis, A.: Daily and seasonal climatic conditions of green urban open spaces in theMediterranean climate and their impact on human comfort. Build. Environ. 51, 285-295 (2012) https://doi.org/10.1016/j.buildenv.2011.11.020
  8. Dutton, E.G., Michalsky, J.J., Stoffel, T., Forgan, B.W., Hickey, J., Nelson, D.W., Alberta, T.L., Reda, I.: Measurement of broadband diffuse solar irradiance using current commercial instrumentation with a correction for thermal offset errors. J. Atmos. Ocean. Technol. 18(3), 297-314 (2001) https://doi.org/10.1175/1520-0426(2001)018<0297:MOBDSI>2.0.CO;2
  9. Garcia y Garcia, A., Guerra, L.C., Hoogenboom, G.: Impact of generated solar radiation on simulated crop growth and yield. Ecol. Model. 210(3), 312-326 (2008) https://doi.org/10.1016/j.ecolmodel.2007.08.003
  10. Gatebe, C.K., Butler, J.J., Cooper, J.W., Kowalewski, M., King, M.D.: Characterization of errors in the use of integrating-sphere systems in the calibration of scanning radiometers. Appl. Opt. 46(31), 7640-7651 (2007) https://doi.org/10.1364/AO.46.007640
  11. Heimo, A., Vernez, A., Wasserfallen, P.: Baseline Surface Radiation Network (BSRN). Concept and Implementation of a BSRN Station, WMO/TD-No. 579, WCRP/WMO, 17 pp. (1993)
  12. Hukseflux: User manual SR25. [Available online at http://www.hukseflux.com/sites/default/files/product_manual/SR25_manual_v1609.pdf] (2015) Accessed March 2017
  13. ISO 9060:1990(E): Solar energy - specification and classification of instruments for measuring hemispherical solar and direct solar radiation. Instrumental standard ISO 9060. International Organisation for Standardization (ISO), Geneva, Switzerland (1990)
  14. Ji, Q.: A method to correct the thermal dome effect of pyranometers in selected historical solar irradiance measurements. J. Atmos. Ocean. Technol. 24(3), 529-536 (2007) https://doi.org/10.1175/JTECH1977.1
  15. Ji, Q., Tsay, S.C.: A novel nonintrusive method to resolve the thermal dome effect of pyranometers: instrumentation and observational basis. J. Geophys. Res. Atmos. 115(D7), D00K21 (2010). https://doi.org/10.1029/2009JD013483
  16. Ji, Q., Tsay, S.C., Lau, K.M., Hansell, R.A., Butler, J.J., Cooper, J.W.: A novel nonintrusive method to resolve the thermal dome effect of pyranometers: radiometric calibration and implications. J. Geophys. Res. Atmos. 116(D24), D24105 (2011). https://doi.org/10.1029/2011JD016466
  17. Kipp&Zonen: Instructionmanual:CMP series. [Available online at http://www.kippzonen.com/Download/72/Manual-Pyranometers-CMPseries-English] (2016) Accessed March 2017
  18. KMA: Guidance of surface meteorological observation. Korea Meteorological Administration, 151 pp. (2002)
  19. Kuhn, M.: Principles of calibration of thermal radiometers il-lustrated by the performance of 12 instruments in Antarctic fieldwork. In: Proceedings Symposium on Solar Radiation-Measurements and Instrumentation, Smithsonian Institute Radiation Biology Laboratory, Smithsonian Institute, pp. 217-268 (1973)
  20. Labsphere: Detector assemblies. [Available online at https://www.labsphere.com/site/assets/files/2678/detectorassemblies.pdf] (2015a) Assessed March 2017
  21. Labsphere: SC 6000 system controller. [Available online at https://www.labsphere.com/site/assets/files/2919/sc_6000_system_controller.pdf] (2015b) Assessed March 2017
  22. Labsphere: Spectraflect 97% diffuse reflectance coating. [Available online at https://www.labsphere.com/site/assets/files/1831/spectraflect.pdf] (2015c) Assessed March 2017
  23. Loutzenhiser, P.G., Manz, H., Felsmann, C., Strachan, P.A., Frank, T., Maxwell, G.M.: Empirical validation of models to compute solar irradiance on inclined surfaces for building energy simulation. Sol. Energy. 81(2), 254-267 (2007) https://doi.org/10.1016/j.solener.2006.03.009
  24. McArthur, L. J. B.: World Climate Research Programme-Baseline Surface Radiation Network (BSRN) Operations Manual (version 2.1). WMO/TD-No. 1274, World Climate Research Programme, WMO, pp. 176 (2005)
  25. McCahill, P.W., Noste, E.E., Rossman, A.J., Callaway, D.W.: Integration of energy analytics and smart energy microgrid into mobile medicine operations for the 2012 Democratic National Convention. Prehosp. Disaster Med. 29(6), 600-607 (2014) https://doi.org/10.1017/S1049023X14001198
  26. Meister, G., Abel, P., Barnes, R., Cooper, J., Davis, C., Godin, M., Goebel, D., Fargion, G., Frouin, R., Korwan, D., Maffione, R., McClain, C., McLean, S., Menzies, D., Poteau, A., Robertson, J., Sherman, J.: The first SIMBIOS radiometric intercomparison (SIMRIC-1), april-september 2001. NASA Technical Memorandum. 2002-210006. NASA Goddard Space Flight Center, Greenbelt, MD, pp. 60 (2002)
  27. Pissulla, D., Seckmeyer, G., Cordero, R.R., Blumthaler, M., Schallhart, B., Webb, A., Kift, R., Smedley, A., Bais, A.F., Kouremeti, N., Cede, A., Herman, J., Kowalewski, M.: Comparison of atmospheric spectral radiance measurement from five independently calibrated systems. Photochem. Photobiol. Sci. 8, 516-527 (2009) https://doi.org/10.1039/b817018e
  28. Reda, I., Hickey, J., Long, C., Myers, D., Stoffel, T., Wilcox, S., Michalsky, J.J., Dutton, E.G., Nelson, D.: Using a blackbody to calculate net longwave responsivity of shortwave solar pyranometers to correct for their thermal offset error during outdoor calibration using the component sum method. J. Atmos. Ocean. Technol. 22(10), 1531-1540 (2005) https://doi.org/10.1175/JTECH1782.1
  29. Reda, I., Dooraghi, M., Andreas, A., Habte, A.: NREL Pyrheliometer Comparisons: September 26-October 7, 2016 (NPC-2016). NREL/TP-3B10-67311. Golden, CO: National Renewable Energy Laboratory, pp. 62 (2016)
  30. Romero, J.: Direct Solar Irradiance Measurements with Pyrheliometers: Instruments and Calibrations. IPC-VIII, Davos, Switzerland, pp. 16 (1995)
  31. Rosa, E.B., Taylor, A.H.: Theory, construction, and use of the photometric integrating sphere. J. Franklin Inst. 195(1), 107-109 (1923) https://doi.org/10.1016/S0016-0032(23)90184-5
  32. Sanchez, G., Serrano, A., Cancillo, M.L., Garcia, J.A.: Pyranometer thermal offset: measurement and analysis. J. Atmos. Ocean. Technol. 32(2), 234-246 (2015) https://doi.org/10.1175/JTECH-D-14-00082.1
  33. Sanchez, G., Serrano, A., Cancillo, M.L.: Effect ofmechanical ventilation on the thermal offset of Pyranometers during cloud-free summer conditions. J. Atmos. Ocean. Technol. 34(5), 1155-1173 (2017) https://doi.org/10.1175/JTECH-D-16-0163.1
  34. Stanhill, G., Cohen, S.: Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agric. For. Meteorol. 107(4), 255-278 (2001) https://doi.org/10.1016/S0168-1923(00)00241-0
  35. Stathopoulos, T., Wu, H., Zacharias, J.: Outdoor human comfort in an urban climate. Build. Environ. 39(3), 297-305 (2004) https://doi.org/10.1016/j.buildenv.2003.09.001
  36. Uguccini, O. W.: An integrating sphere spectroradiometer for solar simulator measurements. NASATN D-4822, pp. 29 (1968)
  37. Ulbricht, R.: Die Bestimmung der mittleren raumlichen Lichtintensitat durch nur eine Messung. Elekt. Zeit. 29, 595-597 (1900)
  38. Vane, G., Chrien, T.G., Reimer, J.H., Green, R.O., Conel, J.E.: Comparison of laboratory calibrations of the airborne visible/infrared imaging spectrometer (AVIRIS) at the beginning and end of the first flight season. SPIE Proc. 924, 168-178 (1988)
  39. WMO: Third WMO regional Pyrheliometer comparison of RA II. Instruments and Observing Methods Report No. 113, pp. 46 (2012)
  40. WMO: International Pyrheliometer Comparison IPC-XII, 28.9-16.10.2015. WMO Instruments Observing Methods Report No. 124, Davos, Switzerland, pp. 105 (2016)
  41. Wu, H., He, Y., Zheng, C., Feng, G., Chen, C., Dong,W., Li, P.,Wang, Y.: Design and characterization of a large aperture spectral radiance source integrating sphere for calibration of satellite remote sensors. 7th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment, 9282, 9282261-7 (2014)
  42. Yang, X., Asseng, S., Wong, M.T.F., Yu, Q., Li, J., Liu, E.: Quantifying the interactive impacts of global dimming and warming on wheat yield and water use in China. Agric. For. Meteorol. 182, 342-351 (2013)
  43. Zhao, W.N., Fang, W., Sun, L.W., Cui, L.H., Wang, Y.P.: Calibration chain design based on integrating sphere transfer radiometer for SI-traceable on-orbit spectral radiometric calibration and its uncertainty analysis. Chinese Phys. B. 25(9), 090701 (2016) https://doi.org/10.1088/1674-1056/25/9/090701
  44. Zo, I.S., Jee, J.B., Lee, K.T., Kim, B.Y.: Radiometer measurement Intercomparison using absolute cavity radiometer in regional radiometer Center at Tsukuba, Japan. New. Renew. Ener. 12(4), 5-13 (2016) (in Korean with English abstract)
  45. Zo, I.S., Jee, J.B., Kim, B.Y., Lee, K.T.: Baseline surface radiation network (BSRN) quality control of solar radiation data on the Gangneung-Wonju National University radiation station. Asia-Pac. J. Atmos. Sci. 53(1), 11-19 (2017) https://doi.org/10.1007/s13143-016-0029-5

Cited by

  1. 강릉원주대학교 복사-위성연구소에서 실외 비교관측을 통한 전천일사계 교정 vol.40, pp.2, 2018, https://doi.org/10.5467/jkess.2018.40.2.135
  2. Introducing electronic circuits and hydrological models to postsecondary physical geography and environmental science students: systems science, circuit theory, construction, and calibration vol.4, pp.2, 2018, https://doi.org/10.5194/gc-4-209-2021