• 제목/요약/키워드: integrated sensing method

검색결과 117건 처리시간 0.028초

웰니스 의류에 적용 가능한 바이오센서 동향 연구 (A Review Study of Biosensors applicable to Wellness Wear)

  • 김효진
    • 디지털융복합연구
    • /
    • 제15권11호
    • /
    • pp.231-243
    • /
    • 2017
  • 본 논문은 전기적 감지 방식 바이오센서의 개념을 리뷰하고, 의류 및 텍스트 기반의 바이오센서의 연구 사례를 조사하였다. 생체 신호를 측정 할 수 있는 바이오센서는 생물학적 감지 물질을 이용하여 생물학적 물질의 물리적, 화학적 특성을 감지하는 장치이다. 따라서 바이오센서를 사용하여 생체신호를 측정할 수 있는 웰니스 의류는 U-Health 서비스를 제공하는데 중요한 역할을 한다. 기존 센서와 다르게 바이오센서의 차별화된 특징은 선택적 반응과 생물학적 물질의 결합을 사용한다는 점이다. 이러한 바이오센서 중 전기적 감지 바이오센서는 전기 신호의 처리로 인해 크기가 매우 작아 유비쿼터스 환경을 조성하는데 이용될 수 있다. 따라서 웰니스 의류를 개발하기 위해 소형화가 쉬운 전기적 감지 바이오센서를 연구할 필요가 있다. 본 논문에서는 전기적 감지 바이오센서(전기화학적 방식, 나노와이어/탄소나노튜브 기반 FET 방식)에 대해 자세히 기술하였다. 마지막으로, 이러한 고찰을 통해 향후 웰니스 의류에 적용 가능할 바이오센서의 기술개발 방향을 제언하였다.

A real-time unmeasured dynamic response prediction for nuclear facility pressure pipeline system

  • Seungin Oh ;Hyunwoo Baek ;Kang-Heon Lee ;Dae-Sic Jang;Jihyun Jun ;Jin-Gyun Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2642-2649
    • /
    • 2023
  • A real-time unmeasured dynamic response prediction process for the nuclear power plant pressure pipeline is proposed and its performance is tested in the test-loop system (KAERI). The aim of the process is to predict unmeasurable or unreachable dynamic responses such as acceleration, velocity, and displacement by using a limited amount of directly measured physical responses. It is achieved by combining a well-constructed finite element model and robust inverse force identification algorithm. The pressure pipeline system is described by using the displacement-pressure vibro-acoustic formulation to consider fully filled liquid effect inside the pipeline structure. A robust multiphysics modal projection technique is employed for the real-time sensor synchronized prediction. The inverse force identification method is also derived and employed by using Bathe's time integration method to identify the full-field responses of the target system from the modal domain computation. To validate the performance of the proposed process, an experimental test is extensively performed on the nuclear power plant pressure pipeline test-loop under operation conditions. The results show that the proposed identification process could well estimate the unmeasured acceleration in both frequency and time domain faster than 32,768 samples per sec.

On Mathematical Representation and Integration Theory for GIS Application of Remote Sensing and Geological Data

  • Moon, Woo-Il M.
    • 대한원격탐사학회지
    • /
    • 제10권2호
    • /
    • pp.37-48
    • /
    • 1994
  • In spatial information processing, particularly in non-renewable resource exploration, the spatial data sets, including remote sensing, geophysical and geochemical data, have to be geocoded onto a reference map and integrated for the final analysis and interpretation. Application of a computer based GIS(Geographical Information System of Geological Information System) at some point of the spatial data integration/fusion processing is now a logical and essential step. It should, however, be pointed out that the basic concepts of the GIS based spatial data fusion were developed with insufficient mathematical understanding of spatial characteristics or quantitative modeling framwork of the data. Furthermore many remote sensing and geological data sets, available for many exploration projects, are spatially incomplete in coverage and interduce spatially uneven information distribution. In addition, spectral information of many spatial data sets is often imprecise due to digital rescaling. Direct applications of GIS systems to spatial data fusion can therefore result in seriously erroneous final results. To resolve this problem, some of the important mathematical information representation techniques are briefly reviewed and discussed in this paper with condideration of spatial and spectral characteristics of the common remote sensing and exploration data. They include the basic probabilistic approach, the evidential belief function approach (Dempster-Shafer method) and the fuzzy logic approach. Even though the basic concepts of these three approaches are different, proper application of the techniques and careful interpretation of the final results are expected to yield acceptable conclusions in cach case. Actual tests with real data (Moon, 1990a; An etal., 1991, 1992, 1993) have shown that implementation and application of the methods discussed in this paper consistently provide more accurate final results than most direct applications of GIS techniques.

CNT 기반의 직물센서 구현 방법에 따른 관절동작 센싱 효율 평가 (Evaluating Joint Motion Sensing Efficiency According to the Implementation Method of CNT-Based Fabric Sensors)

  • 조현승;양진희;이주현
    • 감성과학
    • /
    • 제24권4호
    • /
    • pp.129-138
    • /
    • 2021
  • 본 연구의 목적은 본 연구에서는 탄소나노튜브 기반의 신축성 직물 센서의 모양과 의복 상 부착 위치가 아동의 사지 관절 동작 센싱 성능에 미치는 영향을 분석하고, 이를 통해 아동의 사지 동작 센싱에 적합한 직물 동작 센서의 요건을 규명하고자 하였다. 실험 대상 아동에게 2종의 센서 모양과 2개의 센서 부착 위치에 따라 조작된 실험복을 착의시킨 후 60 deg/sec의 속도로, 팔과 다리의 굽힘-폄 동작(60°, 90°의 동작 각도별로 10회씩 3회 반복 동작, 총 60회 동작)에 의한 직물 센서의 신장과 수축에 따른 전압의 변화량을 측정하였으며, 가속도 센서를 함께 부착하여, 센싱 결과의 일치도를 분석함으로써 신뢰도를 검증하였다. 실험 결과 아동의 팔과 다리 동작을 가장 효율적으로 측정할 수 있는 직물 센서의 구성 요건은 장방형 모양 센서 및 관절로부터 4cm 아래 부위에 부착된 센서로 나타났다. 본 연구에서는 아동의 사지 동작 측정에 적합한 직물 센서를 개발하고 관절동작 센싱에 적합한 센서의 모양과 의복 상 부착 위치에 대한 조건을 분석하였으며, 의복에 통합된 유연한 직물 센서를 활용하여 인체 부위별 동작 센싱이 가능하다는 것을 규명하였다.

출력전류 제어 기능이 향상된 고휘도 LED 구동 IC 설계 (Design of the High Brightness LED Driver IC with Enhanced the Output Current Control Function)

  • 송기남;한석붕
    • 한국전기전자재료학회논문지
    • /
    • 제23권8호
    • /
    • pp.593-600
    • /
    • 2010
  • In this paper, High brightness LED (light-emitting diodes) driver IC (integrated circuit) using new current sensing circuit is proposed. This LED driver IC can provide a constant current with high current precision over a wide input voltage range. The proposed current-sensing circuit is composed of a cascode current sensor and a current comparator with only one reference voltage. This IC minimizes the voltage stress of the MOSFET (metal oxide semiconductor field effect transistor) from the maximum input voltage and has low power consumption and chip area by using simple-structured comparator and minimum bias current. To confirm the functioning and characteristics of our proposed LED driver IC, we designed a buck converter. The LED current ripple of the designed IC is in ${\pm}5%$ and a tolerance of the average LED current is lower than 2.43%. This shows much improved feature than the previous method. Also, protections for input voltage and operating temperature are designed to improve the reliability of the designed IC. Designed LED driver IC uses 1.0 ${\mu}m$ X-Fab. BiCMOS process parameters and electrical characteristics and functioning are verified by spectre (Cadence) simulation.

High Performance Current Sensing Circuit for Current-Mode DC-DC Buck Converter

  • Jin, Hai-Feng;Piao, Hua-Lan;Cui, Zhi-Yuan;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권1호
    • /
    • pp.24-28
    • /
    • 2010
  • A simulation study of a current-mode direct current (DC)-DC buck converter is presented in this paper. The converter, with a fully integrated power module, is implemented by using sense method metal-oxide-semiconductor field-effect transistor (MOSFET) and bipolar complementary metal-oxide-semiconductor (BiCMOS) technology. When the MOSFET is used in a current sensor, the sensed inductor current with an internal ramp signal can be used for feedback control. In addition, the BiCMOS technology is applied in the converter for an accurate current sensing and a low power consumption. The DC-DC converter is designed using the standard $0.35\;{\mu}m$ CMOS process. An off-chip LC filter is designed with an inductance of 1 mH and a capacitance of 12.5 nF. The simulation results show that the error between the sensing signal and the inductor current can be controlled to be within 3%. The characteristics of the error amplification and output ripple are much improved, as compared to converters using conventional CMOS circuits.

OCI and ROCSAT-1 Development, Operations, and Applications

  • Chen, Paul;Lee, L.S.;Lin, Shin-Fa
    • 대한원격탐사학회지
    • /
    • 제15권4호
    • /
    • pp.367-375
    • /
    • 1999
  • This paper describes the development, operations, and applications of ROCSAT-l and its Ocean Color Imager (OCI) remote-sensing payload. It is the first satellite program of NSPO. The satellite was successfully launched by Lockheed Martin's Athena on January 26, 1999 from Cape Canaveral, Florida. ROCSAT-l is a Low Earth Orbit (LEO) experimental satellite. Its circular orbit has an altitude of 600km and an inclination angle of 35 degrees. The satellite is designed to carry out scientific research missions, including ocean color imaging, experiments on ionospheric plasma and electrodynamics, and experiments using Ka-band (20∼30GHz) communication payloads. The OCI payload is utilized to observe the ocean color in 7 bands (including one redundant band) of Visible and Near-Infrared (434nm∼889nm) range with the resolution of 800m at nadir and the swath of 702km. It employs high performance telecentric optics, push-broom scanning method using Charge Coupled Devices (CCD) and large-scale integrated circuit chips. The water leaving radiance is estimated from the total inputs to the OCI, including the atmospheric scattering. The post-process estimates the water leaving radiance and generates different end products. The OCI has taken images since February 1999 after completing the early orbit checkout. Analyses have been performed to evaluate the performances of the instrument in orbit and to compare them with the pre-launch test results. This paper also briefly describes the ROCSAT-l mission operations. The spacecraft operating modes and ROCSAT Ground Segment operations are delineated, and the overall initial operations of ROCSAT-l are summarized.

저전력 신호 추출 기법이 내장된 가스 센서 시스템 개발 (Development of a Gas Sensor System with Built-in Low-power Signal Extraction Technique)

  • 현장수;김현준
    • 센서학회지
    • /
    • 제32권2호
    • /
    • pp.105-109
    • /
    • 2023
  • In this study, we present a power-efficient driving method for gas sensor systems based on the analysis of input signal characteristics. The analysis of the gas sensor output signal characteristics in the frequency domain shows that most of the signal portions are distributed in a relatively low frequency region when extracting the gas sensor signal, which can lead to further performance improvement of the gas sensor system. Therefore, the proposed gas signal extracting technique changes the operating frequency of the read-out circuit based on the frequency characteristics of the output signal of the gas sensor, resulting in a reduction of power consumption at the whole system level. The proposed sensing technique, which can be applied to a general-purpose commercial gas sensor system, was implemented in a printed circuit board (PCB) to verify its effectiveness at the commercial level.

Multiple Pivot loading 방법을 이용한 액체 환경에서의 수평방향 힘 교정 (Lateral Force Calibration in Liquid Environment using Multiple Pivot Loading)

  • 김류운;정구현
    • Tribology and Lubricants
    • /
    • 제29권2호
    • /
    • pp.91-97
    • /
    • 2013
  • Quantifying the nanoscale force between the atomic force microscopy (AFM) probe of a force-sensing cantilever and the sample is one of the challenges faced by AFM researchers. The normal force calibration is straightforward; however, the lateral force is complicated due to the twisting motion of the cantilever. Force measurement in a liquid environment is often needed for biological applications; however, calibrating the force of the AFM probes for those applications is more difficult owing to the limitations of conventional calibration methods. In this work, an accurate nondestructive lateral force calibration method using multiple pivot loading was proposed for liquid environment. The torque sensitivity at the location of the integrated probe was extrapolated based on accurately measured torque sensitivities across the cantilever width along a few cantilever lengths. The uncertainty of the torque sensitivity at the location of the integrated tip was about 13%, which is significantly smaller than those for other calibration methods in a liquid environment.

Design of Current-Type Readout Integrated Circuit for 160 × 120 Pixel Array Applications

  • Jung, Eun-Sik;Bae, Young-Seok;Sung, Man-Young
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권2호
    • /
    • pp.221-224
    • /
    • 2012
  • We propose a Readout Integrated Circuit (ROIC), which applies a fixed current bias sensing method to the input stage in order to simplify the circuit structure and the infrared sensor characteristic control. For the sample-and-hold stage to display and control a signal detected by the infrared sensor using a two-dimensional (2D) focal plane array, a differential delta sampling (DDS) circuit is proposed, which effectively removes the FPN. In addition, the output characteristic is improved to have wider bandwidth and higher gain by applying a two-stage variable gain amplifier (VGA). The output characteristic of the proposed device was 23.91 mV/$^{\circ}C$, and the linearity error rate was less than 0.22%. After checking the performance of the ROIC using HSPICE simulation, the chip was manufactured and measured using the SMIC 0.35 um standard CMOS process to confirm that the simulation results from the actual design are in good agreement with the measurement results.