• Title/Summary/Keyword: integrated information map

Search Result 308, Processing Time 0.023 seconds

A Study on the Development of an Automated Inspection Program for 3D Models of Underground Structures (지하구조물 3차원 모델 자동검수 프로그램 개발에 관한 연구)

  • Kim, Sung Su;Han, Kyu Won
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.5
    • /
    • pp.413-419
    • /
    • 2022
  • As the development of the underground space becomes active, safety accidents related to the underground are frequently occurring in recent years. In this regard, the Ministry of Land, Infrastructure and Transport is enforcing the 『Special Act on Underground Safety Management』 (enforced on January 1, 2018, hereafter referred to as the Underground Safety Act). Among the core contents of the Underground Safety Act, underground facilities(water supply, sewage, gas, power, communication, heating) buried underground, underground structures(subway, underpass, underpass, underground parking lot, underground shopping mall, common area), ground (Drilling, wells, geology) of 15 types of underground information can be checked at a glance on a three-dimensional basis by constructing an integrated underground spatial map and using it. The purpose of this study is to develop a program that can quickly inspect the three-dimensional model after creating a three-dimensional underground structure data among the underground spatial integration maps. To this end, we first investigated and reviewed the domestic and foreign status of technology that generates and automatically inspects 3D underground structure data. A quality inspection program was developed. Through this study, it is judged that it will be meaningful as a basic research for improving the quality of underground structures on the integrated map of underground space by automating more than 98% of the 3D model inspection process, which is currently being conducted manually.

Mapping USN Route by Integrating Multiple Spatial Parameters into Radio Propagation Model (다중 공간변수와 전파예측 모델을 통합한 USN 중계 경로망도 제작)

  • Kim, Jin-Taek;Um, Jung-Sup
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.1
    • /
    • pp.51-63
    • /
    • 2008
  • Previous studies for routing In USN (Ubiquitous Sensor Networks) appear to be unreliable due to the dependence on non-spatial data and the lack of map overlay analysis. Multiple spatial parameters and radio propagation modeling techniques were integrated to derive RSSI (Received Signal Strength Indicator) value between route nodes and produce a highly reliable path map. It was possible to identify area-wide patterns of USN route subject to many different Influences (e.g. the specific effects of radio blocking factors such as the visible area, road area, cell duplicated area, and building density), which cannot be acquired by traditional non-spatial modeling. The quantitative evidence concerning the USN route for individual cell as well as entire study area would be utilized as major tools to visualize paths in real-time and to select alternative path when failure or audition of route node occurs.

  • PDF

Big Data Processing and Performance Improvement for Ship Trajectory using MapReduce Technique

  • Kim, Kwang-Il;Kim, Joo-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.10
    • /
    • pp.65-70
    • /
    • 2019
  • In recently, ship trajectory data consisting of ship position, speed, course, and so on can be obtained from the Automatic Identification System device with which all ships should be equipped. These data are gathered more than 2GB every day at a crowed sea port and used for analysis of ship traffic statistic and patterns. In this study, we propose a method to process ship trajectory data efficiently with distributed computing resources using MapReduce algorithm. In data preprocessing phase, ship dynamic and static data are integrated into target dataset and filtered out ship trajectory that is not of interest. In mapping phase, we convert ship's position to Geohash code, and assign Geohash and ship MMSI to key and value. In reducing phase, key-value pairs are sorted according to the same key value and counted the ship traffic number in a grid cell. To evaluate the proposed method, we implemented it and compared it with IALA waterway risk assessment program(IWRAP) in their performance. The data processing performance improve 1 to 4 times that of the existing ship trajectory analysis program.

Visible and SWIR Satellite Image Fusion Using Multi-Resolution Transform Method Based on Haze-Guided Weight Map (Haze-Guided Weight Map 기반 다중해상도 변환 기법을 활용한 가시광 및 SWIR 위성영상 융합)

  • Taehong Kwak;Yongil Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.283-295
    • /
    • 2023
  • With the development of sensor and satellite technology, numerous high-resolution and multi-spectral satellite images have been available. Due to their wavelength-dependent reflection, transmission, and scattering characteristics, multi-spectral satellite images can provide complementary information for earth observation. In particular, the short-wave infrared (SWIR) band can penetrate certain types of atmospheric aerosols from the benefit of the reduced Rayleigh scattering effect, which allows for a clearer view and more detailed information to be captured from hazed surfaces compared to the visible band. In this study, we proposed a multi-resolution transform-based image fusion method to combine visible and SWIR satellite images. The purpose of the fusion method is to generate a single integrated image that incorporates complementary information such as detailed background information from the visible band and land cover information in the haze region from the SWIR band. For this purpose, this study applied the Laplacian pyramid-based multi-resolution transform method, which is a representative image decomposition approach for image fusion. Additionally, we modified the multiresolution fusion method by combining a haze-guided weight map based on the prior knowledge that SWIR bands contain more information in pixels from the haze region. The proposed method was validated using very high-resolution satellite images from Worldview-3, containing multi-spectral visible and SWIR bands. The experimental data including hazed areas with limited visibility caused by smoke from wildfires was utilized to validate the penetration properties of the proposed fusion method. Both quantitative and visual evaluations were conducted using image quality assessment indices. The results showed that the bright features from the SWIR bands in the hazed areas were successfully fused into the integrated feature maps without any loss of detailed information from the visible bands.

High Performance Coprocessor Architecture for Real-Time Dense Disparity Map (실시간 Dense Disparity Map 추출을 위한 고성능 가속기 구조 설계)

  • Kim, Cheong-Ghil;Srini, Vason P.;Kim, Shin-Dug
    • The KIPS Transactions:PartA
    • /
    • v.14A no.5
    • /
    • pp.301-308
    • /
    • 2007
  • This paper proposes high performance coprocessor architecture for real time dense disparity computation based on a phase-based binocular stereo matching technique called local weighted phase-correlation(LWPC). The algorithm combines the robustness of wavelet based phase difference methods and the basic control strategy of phase correlation methods, which consists of 4 stages. For parallel and efficient hardware implementation, the proposed architecture employs SIMD(Single Instruction Multiple Data Stream) architecture for each functional stage and all stages work on pipelined mode. Such that the newly devised pipelined linear array processor is optimized for the case of row-column image processing eliminating the need for transposed memory while preserving generality and high throughput. The proposed architecture is implemented with Xilinx HDL tool and the required hardware resources are calculated in terms of look up tables, flip flops, slices, and the amount of memory. The result shows the possibility that the proposed architecture can be integrated into one chip while maintaining the processing speed at video rate.

Maps of Japan and the Understanding of Japan in the Joseon Dynasty (조선시대의 일본지도와 일본 인식)

  • 오상학
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.1
    • /
    • pp.32-47
    • /
    • 2003
  • The Joseon had made maps of Japan with information that gained during the exchanges with Japan on the basis of the polio of maintaining amicable relations. The elaborate map of Japan similar to Haenggido was in Honilgangniyokdaekukdojido(Map of integrated lands and regions of historical countries and capitals, made in 1402, and more accurate map of Japan was found in Haedongjegukgi(Chronicle of the countries of the Eastern Sea, compiled by Sinsukju in 1471. These products were due to openness of foreign exchanges in 15th century. After 16th century, understanding of Japan based on China-centric view was intensified, as the confucianism of Chu-tzu planted its roots deeply in Joseon society as the social doctrine. These tendency were reflected in the map-making, accordingly many kinds of maps of Japan in the atlas were meager in contents and distorted in shorelines. Apart these currents, as comings and goings of official envoy became brisk, elaborated maps of Japan were imported and copied in the Joseon dynasty. Consequently these maps helped the elites of Joseon to raise understanding of Japan.

Fruit Tree Row Recognition and 2D Map Generation for Autonomous Driving in Orchards (과수원 자율 주행을 위한 과수 줄 인식 및 2차원 지도 생성 방법)

  • Ho Young Yun;Duksu Kim
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.1-8
    • /
    • 2024
  • We present a novel algorithm for creating 2D maps tailored for autonomous navigation within orchards. Recognizing that fruit trees in orchards are typically aligned in rows, our primary goal is to accurately detect these tree rows and project this information onto the map. Initially, we propose a simple algorithm that recognizes trees from point cloud data by analyzing the spatial distribution of points. We then introduce a method for detecting fruit tree rows based on the positions of recognized fruit trees, which are integrated into the 2D orchard map. Validation of the proposed approach was conducted using real-world orchard point cloud data acquired via LiDAR. The results demonstrate high tree detection accuracy of 90% and precise tree row mapping, confirming the method's efficacy. Additionally, the generated maps facilitate the development of natural navigation paths that align with the orchard's layout.

Design of an Integrated University Information Service Model Based on Block Chain (블록체인 기반의 대학 통합 정보서비스 실증 모델 설계)

  • Moon, Sang Guk;Kim, Min Sun;Kim, Hyun Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.43-50
    • /
    • 2019
  • Block-chain enjoys technical advantages such as "robust security," owing to the structural characteristic that forgery is impossible, decentralization through sharing the ledger between participants, and the hyper-connectivity connecting Internet of Things, robots, and Artificial Intelligence. As a result, public organizations have highly positive attitudes toward the adoption of technology using block-chain, and the design of university information services is no exception. Universities are also considering the application of block-chain technology to foundations that implement various information services within a university. Through case studies of block-chain applications across various industries, this study designs an empirical model of an integrated information service platform that integrates information systems in a university. A basic road map of university information services is constructed based on block-chain technology, from planning to the actual service design stage. Furthermore, an actual empirical model of an integrated information service in a university is designed based on block-chain by applying this framework.

Hail Risk Map based on Multidisciplinary Data Fusion (다학제적 데이터 융합에 기초한 우박위험지도)

  • Suhyun, Kim;Seung-Jae, Lee;Kyo-Moon, Shim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.234-243
    • /
    • 2022
  • In Korea, hail damage occurs every year, and in the case of agriculture, it causes severe field crop and cultivation facility losses. Therefore, it is necessary to develop a hail information service system customized for Korea's primary production and crop-growing areas to minimize hail damage. However, the observation of hail is relatively more difficult than that of other meteorological variables, and the available data are also spatially and temporally variable. A hail information service system was developed to understand the temporal and spatial distribution of hail occurrence. As part of this, a hail observation database was established that integrated the observation data from Korea Meteorological Administration with the information from newspaper reports. Furthermore, a hail risk map was produced based on this database. The risk map presented the nationwide distribution and characteristics of hail showers from 1970 to 2018, and the northeastern region of South Korea was found to be relatively dangerous. Overall, hail occurred nationwide, especially in the northeast and some inland areas (Gangwon, Gyeongbuk, and Chungbuk province) and in winter, mainly on the north coast and some inland areas as graupel (small and soft hail). Analyzing the time of day, frequency, and hailstone size of hail shower occurrences by region revealed that the incidence of large hail stones (e.g., 10 cm at Damyang-gun) has increased in recent years and that showers occurred mainly in the afternoon when the updraft was well formed. By integrating multidisciplinary data, the temporal and spatial gap in hail data could be supplemented. The hail risk map produced in this study will be helpful for the selection of suitable crops and growth management strategies under the changing climate conditions.

Using High Resolution Satellite Imagery for New Address System (도로명 및 건물번호 부여사업에서 고해상도 위성영상의 활용)

  • Bae, Sun-Hak;Kim, Chang-Hwan;Shin, Young-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.4
    • /
    • pp.109-121
    • /
    • 2003
  • The point of this research is the use of the high resolution satellite image for local government's new address system, as well as spatially field investigation support and base map error finding. Most local governments use scale 1/1,000 and 1/5,000 digital map for base map and field investigation. But field investigator's knowledge insufficiency and the lack of base map's currency make things too difficult from the beginning of the project. As the way of solving this problem, this research offers the use of the high resolution satellite image in new address system with cadence data of digital base map. Until now satellite image is not suitable for our situation because it has low resolution. But this problem was solved for 1m space resolution satellite image and it is being applied wider and wider. Now vector data and Raster data are integrated for complimenting of each weak point. In this study the use of the high resolution satellite image in new address system is expected to improve the quality of the results and reduce the expenses. In addition the satellite image can use local government's fundamental data.

  • PDF