• Title/Summary/Keyword: integrated extraction

Search Result 231, Processing Time 0.027 seconds

Integration of Multi-spectral Remote Sensing Images and GIS Thematic Data for Supervised Land Cover Classification

  • Jang Dong-Ho;Chung Chang-Jo F
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.5
    • /
    • pp.315-327
    • /
    • 2004
  • Nowadays, interests in land cover classification using not only multi-sensor images but also thematic GIS information are increasing. Often, although useful GIS information for the classification is available, the traditional MLE (maximum likelihood estimation techniques) does not allow us to use the information, due to the fact that it cannot handle the GIS data properly. This paper propose two extended MLE algorithms that can integrate both remote sensing images and GIS thematic data for land-cover classification. They include modified MLE and Bayesian predictive likelihood estimation technique (BPLE) techniques that can handle both categorical GIS thematic data and remote sensing images in an integrated manner. The proposed algorithms were evaluated through supervised land-cover classification with Landsat ETM+ images and an existing land-use map in the Gongju area, Korea. As a result, the proposed method showed considerable improvements in classification accuracy, when compared with other multi-spectral classification techniques. The integration of remote sensing images and the land-use map showed that overall accuracy indicated an improvement in classification accuracy of 10.8% when using MLE, and 9.6% for the BPLE. The case study also showed that the proposed algorithms enable the extraction of the area with land-cover change. In conclusion, land cover classification results produced through the integration of various GIS spatial data and multi-spectral images, will be useful to involve complementary data to make more accurate decisions.

Speeding up the KLT Tracker for Real-time Image Georeferencing using GPS/INS Data

  • Tanathong, Supannee;Lee, Im-Pyeong
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.629-644
    • /
    • 2010
  • A real-time image georeferencing system requires all inputs to be determined in real-time. The intrinsic camera parameters can be identified in advance from a camera calibration process while other control information can be derived instantaneously from real-time GPS/INS data. The bottleneck process is tie point acquisition since manual operations will be definitely obstacles for real-time system while the existing extraction methods are not fast enough. In this paper, we present a fast-and-automated image matching technique based on the KLT tracker to obtain a set of tie-points in real-time. The proposed work accelerates the KLT tracker by supplying the initial guessed tie-points computed using the GPS/INS data. Originally, the KLT only works effectively when the displacement between tie-points is small. To drive an automated solution, this paper suggests an appropriate number of depth levels for multi-resolution tracking under large displacement using the knowledge of uncertainties the GPS/INS data measurements. The experimental results show that our suggested depth levels is promising and the proposed work can obtain tie-points faster than the ordinary KLT by 13% with no less accuracy. This promising result suggests that our proposed algorithm can be effectively integrated into the real-time image georeferencing for further developing a real-time surveillance application.

Developing a Method to Define Mountain Search Priority Areas Based on Behavioral Characteristics of Missing Persons

  • Yoo, Ho Jin;Lee, Jiyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.293-302
    • /
    • 2019
  • In mountain accident events, it is important for the search team commander to determine the search area in order to secure the Golden Time. Within this period, assistance and treatment to the concerned individual will most likely prevent further injuries and harm. This paper proposes a method to determine the search priority area based on missing persons behavior and missing persons incidents statistics. GIS (Geographic Information System) and MCDM (Multi Criteria Decision Making) are integrated by applying WLC (Weighted Linear Combination) techniques. Missing persons were classified into five types, and their behavioral characteristics were analyzed to extract seven geographic analysis factors. Next, index values were set up for each missing person and element according to the behavioral characteristics, and the raster data generated by multiplying the weight of each element are superimposed to define models to select search priority areas, where each weight is calculated from the AHP (Analytical Hierarchy Process) through a pairwise comparison method obtained from search operation experts. Finally, the model generated in this study was applied to a missing person case through a virtual missing scenario, the priority area was selected, and the behavioral characteristics and topographical characteristics of the missing persons were compared with the selected area. The resulting analysis results were verified by mountain rescue experts as 'appropriate' in terms of the behavior analysis, analysis factor extraction, experimental process, and results for the missing persons.

TANFIS Classifier Integrated Efficacious Aassistance System for Heart Disease Prediction using CNN-MDRP

  • Bhaskaru, O.;Sreedevi, M.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.171-176
    • /
    • 2022
  • A dramatic rise in the number of people dying from heart disease has prompted efforts to find a way to identify it sooner using efficient approaches. A variety of variables contribute to the condition and even hereditary factors. The current estimate approaches use an automated diagnostic system that fails to attain a high level of accuracy because it includes irrelevant dataset information. This paper presents an effective neural network with convolutional layers for classifying clinical data that is highly class-imbalanced. Traditional approaches rely on massive amounts of data rather than precise predictions. Data must be picked carefully in order to achieve an earlier prediction process. It's a setback for analysis if the data obtained is just partially complete. However, feature extraction is a major challenge in classification and prediction since increased data increases the training time of traditional machine learning classifiers. The work integrates the CNN-MDRP classifier (convolutional neural network (CNN)-based efficient multimodal disease risk prediction with TANFIS (tuned adaptive neuro-fuzzy inference system) for earlier accurate prediction. Perform data cleaning by transforming partial data to informative data from the dataset in this project. The recommended TANFIS tuning parameters are then improved using a Laplace Gaussian mutation-based grasshopper and moth flame optimization approach (LGM2G). The proposed approach yields a prediction accuracy of 98.40 percent when compared to current algorithms.

Development of a Gas Sensor System with Built-in Low-power Signal Extraction Technique (저전력 신호 추출 기법이 내장된 가스 센서 시스템 개발)

  • Jang-Su Hyeon;Hyeon-June Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.105-109
    • /
    • 2023
  • In this study, we present a power-efficient driving method for gas sensor systems based on the analysis of input signal characteristics. The analysis of the gas sensor output signal characteristics in the frequency domain shows that most of the signal portions are distributed in a relatively low frequency region when extracting the gas sensor signal, which can lead to further performance improvement of the gas sensor system. Therefore, the proposed gas signal extracting technique changes the operating frequency of the read-out circuit based on the frequency characteristics of the output signal of the gas sensor, resulting in a reduction of power consumption at the whole system level. The proposed sensing technique, which can be applied to a general-purpose commercial gas sensor system, was implemented in a printed circuit board (PCB) to verify its effectiveness at the commercial level.

A Research of Trends in Development of Bio-Diesel Aviation Fuel Technology using Microalgae (미세조류 이용 바이오디젤 항공유 기술개발 동향 연구)

  • Han-Young Yoon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.32 no.2
    • /
    • pp.151-158
    • /
    • 2024
  • Microalgae are aquatic microorganisms capable of photosynthetic growth using water, carbon dioxide and sunlight, and can replace petroleum for transportation. It is receiving great attention as a potential next-generation biological resource. The microalgae biodiesel production process is largely based on the development of highly efficient strains and mass production. It consists of cultivation, harvesting, oil extraction, fuel conversion and by-product utilization. Currently, microalgae diesel is 3-5 times more expensive than petroleum diesel. However, with the optimization of each element technology and the development of integrated systems, not only biofuels, but also industrial materials, wastewater treatment, and greenhouse gases As application expands to various fields such as abatement, the timing of commercialization may be brought forward. Oil prices have recently fallen due to the influence of sail gas. Although there has been a significant drop, global warming is an urgent challenge for current and future generations. In particular, Korea, which does not have oil resources, We must always prepare for political environmental changes, high oil prices, and energy crises. In this paper, the need for eco-friendly biofuel for carbon dioxide conversion. In addition to research trends, domestic and international research trends, and economic prospects, the concept of microalgae and the element technologies of the biodiesel production process are briefly discussed introduced.

A Study on the Integration of Airborne LiDAR and UAV Data for High-resolution Topographic Information Construction of Tidal Flat (갯벌지역 고해상도 지형정보 구축을 위한 항공 라이다와 UAV 데이터 통합 활용에 관한 연구)

  • Kim, Hye Jin;Lee, Jae Bin;Kim, Yong Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.345-352
    • /
    • 2020
  • To preserve and restore tidal flats and prevent safety accidents, it is necessary to construct tidal flat topographic information including the exact location and shape of tidal creeks. In the tidal flats where the field surveying is difficult to apply, airborne LiDAR surveying can provide accurate terrain data for a wide area. On the other hand, we can economically obtain relatively high-resolution data from UAV (Unmanned Aerial Vehicle) surveying. In this study, we proposed the methodology to generate high-resolution topographic information of tidal flats effectively by integrating airborne LiDAR and UAV point clouds. For the purpose, automatic ICP (Iterative Closest Points) registration between two different datasets was conducted and tidal creeks were extracted by applying CSF (Cloth Simulation Filtering) algorithm. Then, we integrated high-density UAV data for tidal creeks and airborne LiDAR data for flat grounds. DEM (Digital Elevation Model) and tidal flat area and depth were generated from the integrated data to construct high-resolution topographic information for large-scale tidal flat map creation. As a result, UAV data was registered without GCP (Ground Control Point), and integrated data including detailed topographic information of tidal creeks with a relatively small data size was generated.

A Study of the DB Design Standard for Submitting Completion Drawings for Auto-Renewal of Underground Facility Information (지하시설물정보 자동갱신을 위한 준공도서 제출 표준DB 설계 연구)

  • Park, Dong Hyun;Jang, Yong Gu;Ryu, Ji Song
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.681-688
    • /
    • 2020
  • The Under Space Integrated Map has been constructed consistently from '15 construction projects until the present time in an effort to implement the "ground sinking prevention method" for the purpose of strengthening underground safety management. The constructed Under Space Integrated Map is utilized to provide information to the person in charge at local government through application of the system of underground information based on the administrative network and to deliver this to specialized underground-safety-effects -evaluation organizations through map extraction based on a floor plan. It suffers from a limitation in its practical use, however, since information is only provided, without promoting a separate renewal project. Although in Section 1 of Article 42 in the Special Law Concerning Underground Safety Management the content pertaining to submission obligations of completion drawings related to underground information including change and renewal are stated explicitly in order to solve this problem, submission is not sufficient since a submission window based only on the administrative network is operated. Accordingly, the Ministry of Land, Infrastructure, and Transport constructed an online system for submitting completion drawings, in an attempt to change the method by which entities involved in underground development directly submitted completion drawings. In this study, a DB standard relating to submitting completion drawings was designed and applied in order to construct an auto-renewal system based on submitted completion drawings, which will be extended to cover the range to underground structures hereafter.

Development of Needs Extraction Algorithm Fitting for Individuals in Care Management for the Elderly in Home (재가노인 사례관리의 욕구사정 정확도 향상을 위한 욕구추출 알고리즘 개발 - 데이터 마이닝 분석기법을 활용하여 -)

  • Kim, Young-Sook;Jung, Kook-In;Park, So-Rah
    • Korean Journal of Social Welfare
    • /
    • v.60 no.1
    • /
    • pp.187-209
    • /
    • 2008
  • The authors developed 28 needs assessment tools for integrated assessment centered on needs, which is the core element in care management for the elderly in home. Also, the authors collected the assessment data of 676 elderly persons in home from 120 centers under the Korea Association of Senior Welfare Centers by using the needs assessment tools, and finally developed needs extraction algorithm through decision tree analysis in data mining to identify their actual needs and provide social welfare service suitable for such needs. The needs extraction algorithm for 28 needs of the elderly in home are summarized in

    . The Need No. 8 "Having need of help in going out" of the decision-making model, for example, was divided into 80.3% of asking for help and 11.4% not asking for help with Appeal No. 23 as a major variable. The need increased by 87.9% when the elderly appealed for help to go out and they had a caregiver but decreased by 47.4% when they had no caregiver. When the elderly asked for help in going out, they had a caregiver, and they needed complete help in cleaning, their need of help in going out was shown as 94.2%. However, seen from their answer that they needed complete help in bathing of ADL even if they did not ask for help in going out, it was found that the need of help in going out sharply increased from 11.4% to 80.0%. On the other hand, when they needed partial help or self-supported in bathing, the potential for them to be classified as asking for help in going out was shown to be low as 7.7%. In the said decision-making model, the number of cases for parent node and child node was designated as 50 and 25, respectively, with level 5 of the maximum tree depth as stopping rule. By this, it was shown that their decision-making was found to be effective as 182.13% for the need "Having need of help in going out". The algorithm presented in this study can be useful as systematic and scientific fundamental data in assessment of needs of the elderly in home.

  • PDF
  • Extraction of Classes and Hierarchy from Procedural Software (절차지향 소프트웨어로부터 클래스와 상속성 추출)

    • Choi, Jeong-Ran;Park, Sung-Og;Lee, Moon-Kun
      • Journal of KIISE:Software and Applications
      • /
      • v.28 no.9
      • /
      • pp.612-628
      • /
      • 2001
    • This paper presents a methodology to extract classes and inheritance relations from procedural software. The methodology is based on the idea of generating all groups of class candidates, based on the combinatorial groups of object candidates, and their inheritance with all possible combinations and selecting a group of object candidates, and their inheritance with all possible combinations and selecting a group with the best or optimal combination of candidates with respect to the degree of relativity and similarity between class candidates in the group and classes in a domain model. The methodology has innovative features in class candidates in the group and classes in a domain model. The methodology has innovative features in class and inheritance extraction: a clustering method based on both static (attribute) and dynamic (method) clustering, the combinatorial cases of grouping class candidate cases based on abstraction, a signature similarity measurement for inheritance relations among n class candidates or m classes, two-dimensional similarity measurement for inheritance relations among n class candidates or m classes, two-dimensional similarity measurement, that is, the horizontal measurement for overall group similarity between n class candidates and m classes, and the vertical measurement for specific similarity between a set of classes in a group of class candidates and a set of classes with the same class hierarchy in a domain model, etc. This methodology provides reengineering experts with a comprehensive and integrated environment to select the best or optimal group of class candidates.

    • PDF

    (34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
    Copyright (C) KISTI. All Rights Reserved.