• Title/Summary/Keyword: integrated displacement method

Search Result 78, Processing Time 0.025 seconds

The Electric Control Method on the Packaging Technology for Non-Conductive Materials Using the Surface Processing Cavity Pressure Sensor (표면 가공형 캐비티 압력센서를 이용하여 비전도성 물질용 패키지 기술에 전기적 제어방식 연구)

  • Lee, Sun-Jong;Woo, Jong-Chang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.350-354
    • /
    • 2020
  • In this study, a pressure sensor for each displacement was fabricated based on the silicon-based pressure sensor obtained through simulation results. Wires were bonded to the pressure sensor, and a piezoresistive pressure sensor was inserted into the printed circuit board (PCB) base by directly connecting a micro-electro-mechanical system (MEMS) sensor and a readout integrated circuit (ROIC) for signal processing. In addition, to prevent exposure, a non-conductive liquid silicone was injected into the sensor and the entire ROIC using a pipette. The packaging proceeded to block from the outside. Performing such packaging, comparing simple contact with strong contact, and confirming that the measured pulse wavelength appears accurately.

Finite element modeling of the influence of FRP techniques on the seismic behavior of historical arch stone bridge

  • Mahdikhani, Mahdi;Naderi, Melika;Zekavati, Mehdi
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.99-112
    • /
    • 2016
  • Since the preservation of monuments is very important to human societies, different methods are required to preserve historic structures. In this paper, 3D model of arch stone bridge at Pont Saint Martin, Aosta, Italy, was simulated by 1660 integrated separate stones using ABAQUS$^{(R)}$ software to investigate the seismic susceptibility of the bridge. The main objective of this research was to study a method of preservation of the historical stone bridge against possible earthquakes using FRP techniques. The nonlinear behavior model of materials used theory of plasticity based on Drucker-Prager yield criterion. Then, contact behavior between the block and mortar was modeled. Also, Seismosignal software was used to collect data related to 1976 Friuli Earthquake Italy, which constitutes a real seismic loading. The results show that, retrofitting of the arch stone bridge using FRP techniques decreased displacement of stones of spandrel walls, which prevents the collapse of stones.

3-DOF Parallel Micromanipulator : Design Consideration (3차원 평형 마이크로조정장치 : 설계 고려사항)

  • Lee, Jeong-Ick;Lee, Dong-Chan;Han, Chang-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.13-22
    • /
    • 2008
  • For the accuracy correction of the micro-positioning industrial robot, micro-manipulator has been devised. The compliant mechanisms using piezoelectric actuators is necessary geometrically and structurally to be developed by the optimization approaches. The overall geometric advantage as the mechanical efficiencies of the mechanism are considered as objective functions, which respectively art the ratio of output displacement to input force, and their constraints are the vertical notion of supporting leg and the structural strength of manipulation. In optimizing the compliant mechanical amplifier, the sequential linear programming and an optimality criteria method are used for the geometrical dimensions of compliant bridges and flexure hinges. This paper presents the integrated design process which not only can maximize the mechanism feasibilities but also can ensure the positioning accuracy and sufficient workspace. Experiment and simulation are presented for validating the design process through the comparisons of the kinematical and structural performances.

Structural seismic response versus epicentral distance and natural period: the case study of Boumerdes (Algeria) 2003 earthquake

  • Dorbani, S.;Badaoui, M.;Benouar, D.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.3
    • /
    • pp.333-350
    • /
    • 2013
  • This paper deals with the development of expressions relating structural seismic response parameters to the epicentral distances of an earthquake and the natural period of several reinforced concrete buildings (6, 9 and 12 storey), with three floor plans: symmetric, monosymmetric, and unsymmetric. These structures are subjected to seismic spectrum of accelerations collected during the Boumerdes earthquake (Algeria, May $21^{st}$, 2003, Mw=6.8) at different epicentral distances. The objective of this study is to develop relations between structural responses namely: base shear, storey displacements, interstory drifts and epicentral distance and fundamental period for a given earthquake. The seismic response of the buildings is carried out in both longitudinal transverse and directions by the response spectrum method (modal spectral approach).

Free Control Stability Analysis of Sports Utility Vehicle-EPS (Sports Utility Vehicle-EPS의 자유제어 안정성 해석)

  • 장봉춘;권대규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.162-167
    • /
    • 2004
  • In this research the Co-simulation technique for an electric power steering system with MATLAB/SIMULINK and a full vehicle model with ADAMS has been developed. The dynamic responses of vehicle chassis and steering system are evaluated. Then, a full vehicle model interacted with EPS control is concurrently simulated with an impulsive steering wheel torque input to analyze the stability of 'free control' or hands free motion for Sports Utility Vehicle. This integrated method allows engineers to reduce the prototype testing cost and to shorten the developing period.

The role of wall configuration and reinforcement type in selecting the pseudo-static coefficients for reinforced soil walls

  • Majid Yazdandoust;Amirhossein Rasouli Jamnani;Mohsen Sabermahani
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.555-570
    • /
    • 2023
  • In the current study, a series of experimental and analytical evaluations were performed to introduce the horizontal pseudo static coefficient (kh) as a function of the wall configuration and the reinforcement type for analyzing reinforced soil walls. For this purpose, eight shaking table tests were performed on reduced-scale models of integrated and two-tiered walls reinforced by metal strip and geogrid to determine the distribution of dynamic lateral pressure in the walls. Then, the physical models were analyzed using Mononobe-Okabe method to estimate the value of kh required to establish the dynamic lateral pressures similar to those observed in shaking table tests. Based on the results, the horizontal pseudo static coefficient and the position of resultant lateral force (R) were introduced as a function of the horizontal peak ground acceleration (HPGA), the wall configuration, the reinforcement type as well as maximum wall displacement.

Application of IDA Method for Hull Plate Forming by Multi-Point Press Forming (다점 프레스를 이용한 곡면 성형의 가공 정보 산출을 위한 IDA방법)

  • Yoon, Jong-Sung;Lee, Jang-Hyun;Ryu, Cheol-Ho;Hwang, Se-Yun;Lee, Hwang-Beom
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.75-82
    • /
    • 2008
  • Flame bending has been extensively used in the shipbuilding industry for hull plate forming In flame bending it is difficult to obtain the desired shape because the residual deformation dependson the complex temperature distribution and the thermal plastic strain. Mechanical bending such as reconfigurable press forming multi-point press forming or die-less forming has been found to improve the automation of hull plateforming because it can more accurately control the desired shape than line heating. Multi-point forming is a process in which external forces are used to form metal work-pieces. Therefore it can be a flexible and efficient forming technique. This paper presents an optimal approach to determining the press-stroke for multi-point press forming of curved shapes. An integrated configuration of Finite element analysis (FEA) and spring-back compensation algorithm is developed to calculate the strokes of the multi-point press. Not only spring-back is modeled by elastic plastic shell elements but also an iterative algorithm to compensate the spring-back is applied to adjust the amount of pressing stroke. An iterative displacement adjustment (IDA) method is applied by integration of the FEA procedure and the spring-back compensation work. Shape deviation between the desired surface and deform£d plate is minimized by the IDA algorithm.

Step size determination method using neural network for personal navigation system (개인휴대 추측항법 시스템을 위한 신경망을 이용한 보폭 결정 방법)

  • 윤선일;홍진석;지규인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.80-80
    • /
    • 2000
  • The GPS can provide accurate position information on the earth. But GPS receiver can't give position information inside buildings. DR(Dead-Reckoning) or INS(Inertial Navigation System) gives position information continuously indoors as well as outdoors, because they do not depend on the external navigation information. But in general, the inertial sensors severely suffer from their drift errors, the error of these navigation system increases with time. GPS and DR sensors can be integrated together with Kalman filter to overcome these problems. In this paper, we developed a personal navigation system which can be carried by person, using GPS and electronic pedometer. The person's footstep is detected by an accelerometer installed in vertical direction and the direction of movement is sensed by gyroscope and magnetic compass. In this case the step size is varying with person and changing with circumstance, so determining step size is the problem. In order to calculate the step size of detected footstep, the neural network method is used. The teaming pattern of the neural network is determined by human walking pattern data provided by 3-axis accelerometer and gyroscope. We can calculate person's location with displacement and heading from this information. And this neural network method that calculates step size gives more improved position information better than fixed step size.

  • PDF

New Calibration Methods for improving the Accuracy of AFM (원자간력 현미경의 자율교정법)

  • Kweon, Hyun-Kyu;Go, Young-Chae
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.48-52
    • /
    • 2001
  • In this paper presents an accurate AFM used that is free from the Z-directional distortion of a servo actuator is described. Two mathematical correction methods by the in-situ self-calibrationare employed in this AFM. One is the method by the integration, and the other is the method by inverse function of the calibration curve. The in situ self-calibration method by the integration, the derivative of the calibration curve function of the PZT actuator is calculated from the profile measurement data sets which are obtained by repeating measurements after a small Z-directional shift. Input displacement at each sampling point is approximately estimated first by using a straight calibration line. The derivative is integrated with reference to the approximate input to obtain the approximate calibration curve. Then the approximation of the input value of each sampling point is improved using the obtained calibration curve. Next the integral of the derivative is improved using the newly estimated input values. As a result of repeating these improving process, the calibration curve converges to the correct one, and the distortion of the AFM image can be corrected. In the in situ self-calibration through evaluating the inverse function of the calibration curve, the profile measurement data sets were used during the data processing technique. Principles and experimental results of the two methods are presented.

  • PDF

Large core polymeric single mode waveguide for passive fiber alignment (광섬유 수동정렬을 위한 단일 모드 대형 코어 폴리머 광도파로)

  • Cho, Su-Hong;Beak, Yu-Jin;Oh, Min-Choel
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.1
    • /
    • pp.79-84
    • /
    • 2005
  • To increase the tolerance for passive fiber alignment, a single mode polymer waveguide with a large core structure is demonstrated. The large core waveguide is designed to have a mode profile comparable to that of a thermally expanded core (TEC) fiber, and it can be connected to a high-contrast waveguide through an adiabatic transition taper structure. From a waveguide with a rectangular core of 25 ${\times}$ 25 ${\mu}{\textrm}{m}$$^2$, a single mode propagation is observed when the index contrast is as low as 0.0005. A UV-cured injection molding method is used to fabricate the thick core structure. Due to the large mode size, the insertion loss of the device is below 0.5 dB until the lateral displacement of the TEC fiber is 4.5 ${\mu}{\textrm}{m}$. The low insertion loss is important for reproducible passive alignment.