• Title/Summary/Keyword: integrated control system

Search Result 2,479, Processing Time 0.032 seconds

Intelligent Online Driving System

  • Xuan, Chau-Nguyen;Youngil Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.479-479
    • /
    • 2000
  • Recently, IVS(Intelligent Vehicle Systems) or ITS(Intelligent Traffic Systems) are much concerned subjects of automotive industry. In this paper, we will introduce an Intelligent Online Driving System for a car. This system allows the driver to be able to drive the car just by operating an integrated joystick. The proposed driving system could be implemented into any car and the key point of the design is that the driver still can drive the car as normal without using the joystick. Our Intelligent Online Driving System includes the integrated joystick, steering wheel control system, brake and acceleration (B&A)pedals control system, and the central control computer system. Steering wheel and B&A pedals are controlled by AC servo-motors. The integrated joystick generates the desired positions and the embedded computer controls these two servomotors to track the commands given by joystick. The control method for two servo-motors is PID control.

  • PDF

Development of Integrated Dynamics Control System of SUV Vehicle with Front and Rear Steering System (SUV 차량의 전륜 및 후륜 조향 장치를 이용한 통합운동제어시스템 설계)

  • Song, Jeonghoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.31-37
    • /
    • 2018
  • In order to improve stability and controllability of SUV vehicle, Integrated Dynamics Control system with Steering system (IDCS) was developed. Eight degree of freedom vehicle model and front and rear steering system model were used to design IDCS system. It also employs Fuzzy logic control method to design integrate control system. The performance of IDCS was evaluated with two road conditions and several driving conditions. The result shows that SUV vehicle with IDCS tracked the reference yaw rate under all tested conditions. IDCS reduced the body slip angle also. It represents IDCS improves vehicle stability and steerability.

Virtual Inertia Control of D-PMSG Based on the Principle of Active Disturbance Rejection Control

  • Shi, Qiaoming;Wang, Gang;Fu, Lijun;Liu, Yang;Wu, You;Xu, Li
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.1969-1982
    • /
    • 2015
  • The virtual inertia control (VIC) of wind turbine with directly-driven permanent-magnet synchronous generator (D-PMSG) can act similarly to the conventional synchronous generator in inertia response and frequency control, thereby supporting the system frequency stability. However, because the wind speed is inconstant and changeable to a certain extent and the D-PMSG is a complex nonlinear system, there are great difficulties in the virtual inertia optimal control of the D-PMSG. Based on the design principle of the active disturbance rejection control (ADRC), this paper presents a new VIC strategy for the D-PMSG from the perspective of power disturbance suppression in the system. The strategy helps fulfill the power grid disturbance estimation and compensation by means of the extended state observer (ESO) so as to improve the disturbance-resisting performance of the system. Compared with conventional proportional-derivative virtual inertia control (PDVIC), this method, which is of better adaptability and robustness, can not only improve the property of the D-PMSG responding to the system frequency but also reduce the influence of wind speed disturbance. The simulation and experiment results have verified the effectiveness and feasibility of the VIC based on the ADRC.

Development of integrated scheduling system for virtual manufacturing system

  • Roh, Kyoungyun;Noh, Sangdo;Lee, Kyoil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.354-357
    • /
    • 1996
  • Virtual Manufacturing System(VMS) is an integrated computer based model which has physical, logical schema and behavior of real manufacturing system. In this paper, an integrated scheduling system is developed to simulate and control a Virtual Factory. A workflow model is constructed to define and analyze the structure of a VMS. On-line dynamic dispatching system is developed using MultiPass algorithm and scheduling system considering dynamic CAPP is carried out. Integrated scheduling system developed in this paper reduces the discrepancies between virtual model and real manufacturing system, and control of real shop floor is possible.

  • PDF

INS/Vision Integrated Navigation System Considering Error Characteristics of Landmark-Based Vision Navigation (랜드마크 기반 비전항법의 오차특성을 고려한 INS/비전 통합 항법시스템)

  • Kim, Youngsun;Hwang, Dong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.95-101
    • /
    • 2013
  • The paper investigates the geometric effect of landmarks to the navigation error in the landmark based 3D vision navigation and introduces the INS/Vision integrated navigation system considering its effect. The integrated system uses the vision navigation results taking into account the dilution of precision for landmark geometry. Also, the integrated system helps the vision navigation to consider it. An indirect filter with feedback structure is designed, in which the position and the attitude errors are measurements of the filter. Performance of the integrated system is evaluated through the computer simulations. Simulation results show that the proposed algorithm works well and that better performance can be expected when the error characteristics of vision navigation are considered.

IMPLEMENTATION OF A DECISION SUPPORT SYSTEM FOR INTEGRATED RIVER BASIN WATER MANAGEMENT IN KOREA

  • Shim Soon-Do;Shim Kyu-Cheoul
    • Water Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.157-176
    • /
    • 2004
  • This research presents a prototype development and implementation of Decision Support System (DSS) for integrated river basin water management for the flood control. The DSS consists of Relational Database Management System, Hydrologic Data Monitoring System, Spatial Analysis Module, Spatial and Temporal Analysis for Rainfall Event Tool, Flood Forecasting Module, Real-Time Operation of Multi Reservoir System, and Dialog Module with Graphical User Interface and Graphic Display Systems. The developed DSS provides an automated process of alternative evaluation and selection within a flexible, fully integrated, interactive, centered relational database management system in a user-friendly computer environment. The river basin decision-maker for the flood control should expect that she or he could manage the flood events more effectively by fully grasping the hydrologic situation throughout the basin.

  • PDF

Integrated Chassis Control for the Driving Safety (주행 안전을 위한 통합 샤시 제어)

  • Cho, Wan-Ki;Yi, Kyong-Su;Chang, Nae-Hyuck
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.646-654
    • /
    • 2010
  • This paper describes an integrated chassis control for a maneuverability, a lateral stability and a rollover prevention of a vehicle by the using of the ESC and AFS. The integrated chassis control system consists of a supervisor, control algorithms and a coordinator. From the measured and estimation signals, the supervisor determines the vehicle driving situation about the lateral stability and rollover prevention. The control algorithms determine a desired yaw moment for lateral stability and a desired longitudinal force for the rollover prevention. In order to apply the control inputs, the coordinator determines a brake and active front steering inputs optimally based on the current status of the subject vehicle. To improve the reliability and to reduce the operating load of the proposed control algorithms, a multi-core ECU platform is used in this system. For the evaluation of this system, a closed loop simulations with driver-vehicle-controller system were conducted to investigate the performance of the proposed control strategy.

MOGA-Based Structural Design Method for Diagrid Structural Control System Subjected to Wind and Earthquake Loads

  • Kim, Hyun-Su;Kang, Joo-Won
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1598-1606
    • /
    • 2018
  • An integrated optimal structural design method for a diagrid structure and control device was developed. A multi-objective genetic algorithm was used and a 60-story diagrid building structure was developed as an example structure. Artificial wind and earthquake loads were generated to assess the wind-induced and seismic responses. A smart tuned mass damper (TMD) was used as a structural control system and an MR (magnetorheological) damper was employed to develop a smart TMD (STMD). The multi-objective genetic algorithm used five objectives including a reduction of the dynamic responses, additional stiffness and damping, mass of STMD, capacity of the MR damper for the integrated optimization of a diagrid structure and a STMD. From the proposed method, integrated optimal designs for the diagrid structure and STMD were obtained. The numerical simulation also showed that the STMD provided good control performance for reducing the wind-induced and seismic responses of a tall diagrid building structure.

INTEGRATED CONTROL SYSTEM DESIGN OF ACTIVE FRONT WHEEL STEERING AND FOUR WHEEL TORQUE TO IMPROVE VEHICLE HANDLING AND STABILITY

  • Wu, J.Y.;Tang, H.J.;Li, S.Y.;Zheng, S.B.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.299-308
    • /
    • 2007
  • This study proposes a two-layer hierarchical control system that integrates active front wheel steering and four wheel braking torque control to improve vehicle handling performance and stability. The first layer is a robust model matching controller (R-MMC) based on linear matrix inequalities (LMIs), which optimizes an active front steering angle compensation and a desired yaw moment control, and calculates reference wheel slip for the target wheel according to the desired yaw moment. The second layer is a moving sliding mode controller (MSMC) that can track the reference wheel slip in a predetermined time by commanding proper braking torque on the target wheel to achieve the desired yaw moment. Since vehicle sideslip angle measurement is difficult to achieve in practice, a sliding mode observer (SMO) that requires only vehicle yaw rate as the measured input is also developed in this study. The performance and robustness of the SMO and the integrated control system are demonstrated through comprehensive computer simulations. Simulation results reveal the satisfactory tracking ability of the SMO, and the superior improved vehicle handling performance, stability and robustness of the integrated control vehicle.

Attitude Compensation of Vision/DR Integrated Navigation System Using Gyroscope (자이로스코프를 이용한 영상/DR 통합 항법 시스템의 자세보정)

  • Park, Sul-Gee;Koo, Moon-Suk;Hwang, Dong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.8
    • /
    • pp.810-815
    • /
    • 2010
  • This paper proposes a vision/DR integrated navigation system using distance between wheels of the vehicle and a gyroscope. In order to show the validity of the proposed vision/DR integrated navigation system, experiments were performed for a trajectory of a mobile robot. Experimental results show that the proposed vision/DR integrated navigation system gives better navigation performance than a vision/DR integrated navigation system using only distance between wheels of the vehicle.