• Title/Summary/Keyword: integrated antenna

Search Result 215, Processing Time 0.041 seconds

A Broadband Microstrip Array Antenna for 3G Smart Antenna System Testbed

  • Rashid, Zainol Abidin Abdul;Islam, Mohammad Tariqul;Jiunn, Ng Kok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.7 no.1
    • /
    • pp.41-58
    • /
    • 2007
  • A compact and broadband $4{\times}1$ array antenna was developed for 3G smart antenna system testbed. The $4{\times}1$ uniform linear array antenna was designed to operate at 1.885 to 2.2GHz with a total bandwidth of 315MHz. The array elements were based on the novel broadband L-probe fed inverted hybrid E-H (LIEH) shaped microstrip patch, which offers 22% size reduction to the conventional rectangular microstrip patch antenna. For steering the antenna beam, a commercial variable attenuator (KAT1D04SA002), a variable phase shifter (KPH350SC00) with four units each, and the corporate 4-ways Wilkinson power divider which was fabricated in-house were integrated to form the beamforming feed network. The developed antenna has an impedance bandwidth of 17.32% ($VSWR{\leq}1.5$), 21.78% ($VSWR{\leq}2$) with respect to center frequency 2.02GHz and with an achievable gain of 11.9dBi. The design antenna offer a broadband, compact and mobile solution for a 3G smart antenna testbed to fully characterized the IMT-2000 radio specifications and system performances.

  • PDF

Effect of Feed Substrate Thickness on the Bandwidth and Radiation Characteristics of an Aperture-Coupled Microstrip Antenna with a High Permittivity Feed Substrate

  • Kim, Jae-Hyun;Kim, Boo-Gyoun
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.101-107
    • /
    • 2018
  • The impedance bandwidth and radiation characteristics of an aperture-coupled microstrip line-fed patch antenna (ACMPA) with a high permittivity (${\varepsilon}_r=10$) feed substrate suitable for integration with a monolithic microwave integrated circuit (MMIC) are investigated for various feed substrate thicknesses through an experiment and computer simulation. The impedance bandwidth of an ACMPA with a high permittivity feed substrate increases as the feed substrate thickness decreases. Furthermore, the front-to-back ratio of an ACMPA with a high permittivity feed substrate increases and the cross-polarization level decreases as the feed substrate thickness decreases. As the impedance bandwidth of an ACMPA with a high permittivity feed substrate increases and its radiation characteristics improve as the feed substrate thickness decreases, the ACMPA configuration becomes suitable for integration with an MMIC.

A Development of Radar Altimeter Frequency Converter and Ku-Band Antenna for a Missile (유도무기용 전파고도계 주파수변환기 및 Ku-대역 안테나 개발)

  • Kim, Taehoon;Roh, Jin-Eep
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.833-840
    • /
    • 2013
  • A radar altimeter which measures the distance using radio wave developed by domestic technology has been applied to various missiles. It is used also for calculating the error of integrated navigation technique. There are a couple of methods to reduce the error but in this paper, we proposed to utilize existing C-band radar altimeter main body with frequency conversion. We designed and manufactured the frequency converter and Ku-band antenna to accomplish this goal. From the test results of products' function and performance, we could expect the possibility of applying this method to enhance the missiles' integrated performance.

A Subminiature Antenna for Bluetooth Applications (블루투스용 초소형 안테나)

  • Park, Myoung-Shil;Chun, Ren;Bang, Jai-Hoon;Ahn, Bierng-Chearl
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.4
    • /
    • pp.119-125
    • /
    • 2007
  • In this paper, a miniaturized PCB-integrated antenna is proposed for bluetooth applications. The proposed antenna is a modified form of the printed inverted F antenna where the size reduction is achieved by employing the meander strip for the resonant length part of the radiator. The antenna dimension is optimized using the commercial electromagnetic software MWSTM. The designed antenna is fabricated by the standard photo-etching technique and its performance is measured. The fabricated antenna shows a bandwidth of 125MHz centered at 2.45GHz and a gail of -0.23dBi. The size of the proposed antenna is $9.65mm{\times}5.95mm$ corresponding to the 55 percent of the area of the existing printed inverted F antenna.

  • PDF

A 94-GHz Phased Array Antenna Using a Log-Periodic Antenna on a GaAs Substrate

  • Uhm, Won-Young;Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.2
    • /
    • pp.81-85
    • /
    • 2015
  • A 94-GHz phased array antenna using a log-periodic antenna has been developed on a GaAs substrate. The developed phased array antenna comprises four log-periodic antennas, a phase shifter, and a Wilkinson power divider. This antenna was fabricated using the standard microwave monolithic integrated circuit (MMIC) process including an air bridge for unipolar circuit implementations on the same GaAs substrate. The total chip size of the fabricated phased array antenna is 4.8 mm × 4.5 mm. Measurement results showed that the fabricated phased array antenna had a very wide band performance from 80 GHz to 110 GHz with return loss characteristics better than -10 dB. In the center frequency of 94 GHz, the fabricated phased array antenna showed a return loss of -16 dB and a gain of 4.43 dBi. The developed antenna is expected to be widely applied in many applications at W-band frequency.

Miniaturization of SIW-Based Linearly Polarized Slot Antennas for Software-Defined Radar

  • Han, Jun Yong;Yoon, Seong Sik;Lee, Jae Wook
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.4
    • /
    • pp.248-253
    • /
    • 2016
  • Two substrate integrated waveguide (SIW)-based antennas for the application of software-defined radar are proposed and investigated herein. It is usually well known that SIWs are easily integrated, lightweight, have low insertion loss, and low interference levels compared to conventional microstrip structures. The primary function of the proposed antennas is to transmit continuous waves for indoor motion detection, with the lowest amount of loss and an appropriate amount of gain. Moreover, the results of this study show that the size of the antenna can be reduced significantly (i.e., by about 40%) by applying a meander line structure. The operating frequencies of the proposed antennas are both within the industrial, scientific, and medical band (i.e., 2.4-2.4835 GHz). Measured results of return loss are -16 dB and -20 dB at 2.435 GHz and 2.43 GHz, respectively, and the measured gain is 8.2 dBi and 5.5 dBi, respectively. Antenna design and verification are undertaken through commercially available full electromagnetic software.

Achievable Rate of Beamforming Dual-hop Multi-antenna Relay Network in the Presence of a Jammer

  • Feng, Guiguo;Guo, Wangmei;Gao, Jingliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3789-3808
    • /
    • 2017
  • This paper studies a multi-antenna wireless relay network in the presence of a jammer. In this network, the source node transmits signals to the destination node through a multi-antenna relay node which adopts the amplify-and-forward scheme, and the jammer attempts to inject additive signals on all antennas of the relay node. With the linear beamforming scheme at the relay node, this network can be modeled as an equivalent Gaussian arbitrarily varying channel (GAVC). Based on this observation, we deduce the mathematical closed-forms of the capacities for two special cases and the suboptimal achievable rate for the general case, respectively. To reduce complexity, we further propose an optimal structure of the beamforming matrix. In addition, we present a second order cone programming (SOCP)-based algorithm to efficiently compute the optimal beamforming matrix so as to maximize the transmission rate between the source and the destination when the perfect channel state information (CSI) is available. Our numerical simulations show significant improvements of our propose scheme over other baseline ones.

A Broadband Active Composite Dipole Antenna for Direction-finding Applications at V/UHF-band (V/UHF 대역에서 방향탐지를 위한 광대역 능동 복합 다이폴 안테나)

  • Choi, Jun-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.1 s.24
    • /
    • pp.33-40
    • /
    • 2006
  • A compact broadband active composite dipole antenna for direction finding system at the V/UHF-band is presented. It uses the composite structure which improves the antenna gain and the active circuit for broadband operation. This type of antenna has a high gain more than that of one dipole antenna within limited length(1m). The basic design and performance of both antenna structure and integrated active circuit are presented.

Radiation properties of Flush mounted Circular Patch Antenna (접지면과 높이가 같은 원형 패치 안테나의 복사 특성 해석)

  • Song, Jae-Young;Bang, Hyo-Je;Lee, Haeng-Seon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.343-346
    • /
    • 2005
  • Radiation properties of flush mounted circular patch antenna are investigated. The patch is fed axis-symmetrically by a coaxial cable. Rigorous analysis is given using integral transform and mode matching techniques. The presented method accommodates radiating patch, and integrated matching sections and band pass filter.

  • PDF