• Title/Summary/Keyword: integrated antenna

Search Result 218, Processing Time 0.023 seconds

A Study on the Bandwidth Enhancement of a Microstrip Surface Wave Antenna With a Monopole Like Pattern (모노폴 방사패턴을 가지는 마이크로스트립 표면파 안테나의 대역폭개선에 관한 연구)

  • Jang, Jae-Sam;Jung, Young-Ho;Lee, Ho-Sang;Jo, Dong-Ki;Park, Seong-Bae;Kim, Cheol-Bok;Lee, Mun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.139-145
    • /
    • 2008
  • In this paper, a microstrip surface wave antenna(SWA) with a frequency selective surface structure(FSS) is designed and measured. A microstrip SWA has many advantages such as low profile, low weight, easy fabrication, and compatibility with monolithic microwave integrated circuits(MMIC). In addition, it has demonstrated monopole like beam patterns. The microstrip SWA consists of two parts : a center-fed modified microstrip patch to excite surface wave, and a periodic patches to support the propagation of the surface waves. To obtain wide bandwidth, the ring type parasitic element is inserted and the circular patch is selected for the unit element in FSS structure. Experimental results show that the microstrip SWA has monopole like beam patterns at 5.9GHz. Impedance bandwidth and gain is 12% and 5.6dBi.

Antenna-Diplexer Module for Cellular/SDMB Band Using LTCC Technology (LTCC 공법을 사용한 Cellular/SDMB 안테나-다이플렉서 모듈)

  • Ha, Jeung-Uk;Chang, Ki-Hun;Yoon, Young-Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.774-783
    • /
    • 2007
  • This paper presents an integrated packaging antenna-diplexer module for wireless communication systems in the Cellular and SDMB band. The design and the realization of the proposed one are experimentally analyzed and discussed. It consists of a dual-resonance antenna and a diplexer with a multi-layer LTCC(${\varepsilon}_r=7.8,\;tan\;{\delta}=0.0043$) technology with integration capability and low loss. The dual-resonance antenna of the proposed module has the meander line structure for size reduction and has the shorting structure of an inverted F antenna to achieve good impedance matching. The diplexer of the proposed module was designed with the combination of low pass filter(LPF) and high pass filter(HPF). Decreasing the mutual interference between them provides a high isolation characteristic. The proposed antenna-diplexer module with dimensions of $27.5{\times}12.0{\times}2.2mm$ operates within a range from 813 MHz to 902 MHz for the cellular band and from 2,586 MHz to 2,655 MHz for the SDMB band. And the measured gain of the fabricated module is -1.96 dBi for Cellular band and -5.43 dBi for SDMB band. The parameters for the antenna-diplexer module are investigated and the several performances are discussed.

A Frequency Tunable and Compact Metamaterial Peano Antenna (주파수 가변 및 소형 Metamaterial Peano Antenna)

  • Lee, Dong-Hyun;Jang, Kyung-Duk;Park, Wee-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.866-872
    • /
    • 2007
  • In this paper, we present a frequency tunable and compact antenna which consists of a first-order Peano curve, two shorting posts, and two inductors which are serially connected between the posts and the edge of the Peano curve. By properly choosing the inductance of two inductors, the operating frequency of the antenna can be controlled without sacrificing the fractional bandwidth. To give good demonstration of the operating mechanism, the equivalent circuit of this antenna is included. To validate the simulation results, we have fabricated the several antennas of being integrated with different inductors, and the measured results show a good agreement with the simulated ones. The measured results reveal that the operating frequency is shifted from 1.47 GHz to 0.586 GHz without the decrease of the input impedance bandwidth. In case of integrating two inductors of 91nH and 470nH, the electric size of the antenna is only $0.0246 {\lambda}{\times}0.0246{\lambda}{\times}0.0114{\lambda}$. The measured fractional bandwidth$(S_{11}{\leq}-10 dB)$ and the radiation efficiency of the antenna are 5.22% and 47.25%, respectively.

An Analytic Solution of a Circular Aperture Antenna with a Feed Transition (급전부에 전이 구조가 있는 원형 개구면 안테나의 엄밀한 해석 방법)

  • Lee Haeng-Seon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.10 s.101
    • /
    • pp.982-988
    • /
    • 2005
  • An analytic solution of circular aperture antenna with a feed transition is presented using a hybrid method of generalized scattering matrices and integral transform. The method can give an analytic solution to antennas with integrated filters or mode converters, etc. Scattering matrices and integral transform techniques are combined to accommodate discontinuities connected between an aperture and a feed waveguide, and radiated field from the aperture. The method gives radiation fields as well as return losses of the antenna.

Dual Polarized Array Antenna for S/X Band Active Phased Array Radar Application

  • Han, Min-Seok;Kim, Ju-Man;Park, Dae-Sung;Kim, Hyoung-Joo;Choi, Jae-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.309-315
    • /
    • 2010
  • A dual-band dual-polarized microstrip antenna array for an advanced multi-function radio function concept (AMRFC) radar application operating at S and X-bands is proposed. Two stacked planar arrays with three different thin substrates (RT/Duroid 5880 substrates with $\varepsilon_r$=2.2 and three different thicknesses of 0.253 mm, 0.508 mm and 0.762 mm) are integrated to provide simultaneous operation at S band (3~3.3 GHz) and X band (9~11 GHz). To allow similar scan ranges for both bands, the S-band elements are selected as perforated patches to enable the placement of the X-band elements within them. Square patches are used as the radiating elements for the X-band. Good agreement exists between the simulated and the measured results. The measured impedance bandwidth (VSWR$\leq$2) of the prototype array reaches 9.5 % and 25 % for the S- and X-bands, respectively. The measured isolation between the two orthogonal polarizations for both bands is better than 15 dB. The measured cross-polarization level is ${\leq}-21$ dB for the S-band and ${\leq}-20$ dB for the X-band.

5.8 GHz Microwave Wireless Power Transmission System Development and Transmission-Efficiency Measurement (5.8 GHz 마이크로파 무선전력전송 시스템 개발 및 전송효율측정)

  • Lee, Seong Hun;Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.59-63
    • /
    • 2014
  • Previous studies have selected wireless power transmission system using 2.45 GHz of ISM band, but the researches for 5.8 GHz microwave wireless power transmission have been relatively rare. The 5.8 GHz has some advantages compared with 2.45 GHz. Those are smaller antenna and smaller integrated system for RFIC. In this paper, the 5.8 GHz wireless power transmission system was developed and transmission efficiency was measured according to the distance. A transmitter sent the amplified microwaves through an antenna amplified by a power amplifier of 1W for 5.8 GHz, and a receiver was converted to DC from RF through a RF-DC Converter. In the 1W 5.8GHz wireless power transmission system, the converted currents and voltages were measured to evaluate transmission efficiency at each distance where LED lights up to 1m. The RF-DC Converter is designed and fabricated by impedance matching using full-wave rectifier circuit. The transmission-efficiency of the system shows from 1.05% at 0cm to 0.095% at 100cm by distance.

Integrated-Optic Electric-Field Sensor Utilizing a Ti:LiNbO3 Y-fed Balanced-Bridge Mach-Zehnder Interferometric Modulator With a Segmented Dipole Antenna

  • Jung, Hongsik
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.739-745
    • /
    • 2014
  • We have demonstrated a $Ti:LiNbO_3$ electro-optic electric-field sensor utilizing a $1{\times}2$ Y-fed balanced-bridge Mach-Zehnder interferometric (YBB-MZI) modulator, which uses a 3-dB directional coupler at the output and has two complementary output waveguides. A dc switching voltage of ~25 V and an extinction ratio of ~12.5 dB are observed at a wavelength of $1.3{\mu}m$. For a 20 dBm rf input power, the minimum detectable electric fields are ~8.21, 7.24, and ~13.3 V/m, corresponding to dynamic ranges of ~10, ~12, and ~7 dB at frequencies of 10, 30, and 50 MHz respectively. The sensors exhibit almost linear response for an applied electric-field intensity from 0.29 V/m to 29.8 V/m.

Synthesis of Filtering Structures for Microstrip Active Antennas Using Orlov's Formula

  • Urbani, Fabio;Bilotti, Filiberto;Vegni, Lucio
    • ETRI Journal
    • /
    • v.27 no.2
    • /
    • pp.166-171
    • /
    • 2005
  • In this paper, a synthesis technique for nonuniform filtering structures to be employed in active integrated antenna layouts is presented. The idea is to suppress the higher harmonic contribution due to the presence of nonlinear components through a nonuniform transmission line properly designed via Orlov's synthesis formula. The theory presented is applied here to synthesize an amplifier-based active antenna layout for wireless local area network (WLAN) purposes working at 2.4 GHz. The numerical results presented show the capabilities of the proposed approach.

  • PDF

차세대 무선통신 단말기용 RF시스템 단일 칩 및 패키지(RF-SOC & SOP) 집적 안테나 기술 동향

  • 표철식;정영준;전순익;최재익;김창주;채종석
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.2
    • /
    • pp.55-67
    • /
    • 2003
  • 본 고에서는 차세대 무선통신용 초소형 단말기 구현에서 RF 시스템의 성능 개선에 크게 기여하게 될 RF 집적형 안테나 기술 현황과 향후 발전 방향이 제시된다. 고성능을 유지하면서 초소형 RF 전치단을 실현하기 위한 능동소자와 안테나가 결합하여 복합 기능을 하는 능동 집적 안테나(AIA, Active Integrated Antenna) 기술 현황, RF 시스템 단일 패키지(RF-SOP, System On Package) 형태에 집적 가능한 안테나 및 미래의 꿈인 RF 시스템 단일 칩 (RF-SOC, System On Chip)을 향한 단일 칩 안테나 (AOC, antenna on chip) 기술 동향 등이 기술된다.

OFDM MIMO radar waveform design for targets identification

  • Bai, Ting;Zheng, Nae;Chen, Song
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.592-603
    • /
    • 2018
  • In order to obtain better target identification performance, an efficient waveform design method with high range resolution and low sidelobe level for orthogonal frequency division multiplexing (OFDM) multiple-input multiple-output (MIMO) radar is proposed in this paper. First, the wideband CP-based OFDM signal is transmitted on each antenna to guarantee large bandwidth and high range resolution. Next, a complex orthogonal design (COD) is utilized to achieve code domain orthogonality among antennas, so that the spatial diversity can be obtained in MIMO radar, and only the range sidelobe on the first antenna needs suppressing. Furthermore, sidelobe suppression is expressed as an optimization problem. The integrated sidelobe level (ISL) is adopted to construct the objective function, which is solved using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. The numerical results demonstrate the superiority in performance (high resolution, strict orthogonality, and low sidelobe level) of the proposed method compared to existing algorithms.