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In this paper, a synthesis technique for nonuniform 
filtering structures to be employed in active integrated 
antenna layouts is presented. The idea is to suppress the 
higher harmonic contribution due to the presence of 
nonlinear components through a nonuniform transmission 
line properly designed via Orlov’s synthesis formula. The 
theory presented is applied here to synthesize an amplifier-
based active antenna layout for wireless local area network 
(WLAN) purposes working at 2.4 GHz. The numerical 
results presented show the capabilities of the proposed 
approach. 
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I. Introduction 

Active integrated antennas (AIAs) are components in which 
a passive antenna element and active circuitry are integrated on 
the same substrate [1]. The integration of both antennas and 
active circuits is responsible for greater compactness, lower 
costs, and higher power efficiency with respect to conventional 
passive layouts [2]. 

Specifically when active antennas also involve power 
amplifiers, most of the lost power is due to the amplifier output 
stage [3]. Therefore, there has been great interest during the last 
years in maximizing the power added efficiency, which is 
defined as the ratio between the power at the output port of the 
amplifier and the input power [3]. In order to achieve this goal, 
the higher-order harmonic contributions at the output port have 
to be reflected back to the device. Typical second harmonic 
tuning exploits a quarter-wavelength (where the wavelength is 
intended at the fundamental frequency) short-circuited stub 
connected at the output port, or chip-capacitors exhibiting a 
self-resonance at the second harmonic frequency. 

In AIA layouts, however, the harmonic tuning is usually 
accomplished by using the inherent frequency response of the 
antenna element or by using a proper transmission line with a 
filtering behavior. The approach based on the antenna acting as 
a filter is very effective in enhancing the compactness of the 
layout, but leads to a very narrow-band frequency response. 
Therefore, such an approach cannot be effectively used in 
communication systems requiring multicarrier broadband 
CDMA operation. 

In such cases, a more complicated layout involving a broad-
band filtering structure is more useful. For instance, in [4] 
Anzellotti and others have proposed the employment of a 
photonic band gap periodic transmission line in order to obtain a 
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proper broad-band tuning of the higher harmonic contributions 
in an AIA layout. The periodicity of the transmission line and the 
electric/geometric parameters of the periodic cell control the 
position along the frequency axis, the width and the depth of the 
stop-band. The incidence of each of these parameters on the 
stop-band characteristics has been derived and some useful 
design curves have been provided in [4]. 

Other filtering structures can be effectively used to achieve 
the same broad-band tuning behavior. In this paper, we focus 
our attention on nonuniform transmission lines because of their 
inherent broad-band behavior as matching and filtering 
structures [5], [6]. Although the analysis and synthesis of 
nonuniform transmission lines is an old and well established 
topic in electromagnetics and circuit theory, to the authors’ best 
knowledge, the employment of such nonuniform structures in 
active antenna layouts has not yet been proposed in the open 
technical literature. 

The aim of this paper therefore is to develop an efficient and 
effective design technique to synthesize the electrical and 
geometrical parameters of a nonuniform transmission line to be 
used in AIA layouts for higher harmonic tuning purposes. 

The structure of the paper is as follows. In section II we 
describe the circuit equivalent network of the overall active 
antenna under analysis: the radiating element, the filtering 
nonuniform transmission line, and the amplifier. Section III 
presents the proposed design technique of the filtering 
nonuniform transmission line starting from Orlov’s formula. 
Finally in section IV, some numerical results to show the 
capabilities and effectiveness of the design technique 
developed in the paper are reported. 

II. Circuit Equivalent Network of an Active Integrated 
Antenna 

The layout this paper refers to is depicted in Fig. 1. For 
simplicity, the antenna is considered as a transmitting device, 
but the same considerations can be also applied by reciprocity 
to the receiving operation mode. 

The approximate equivalent circuit representing the passive 
radiating component can be obtained through the transmission 
line model described in [7]. Assuming that the form of the patch 
is the rectangular one depicted in Fig. 2, and that the patch is fed 
at one of its radiating edges by a microstrip line, the equivalent 
network representation for the patch is shown in Fig. 3. 

The lumped elements in Fig. 3 take into account the radiation 
(conductance G) and the reactive effects (susceptance B) at the 
patch edges. 

Simple approximate formulas for such elements can be 
obtained in the case of very thin dielectric substrates (d<λ0/10), 

 

Fig. 1. Schematic layout of the active antenna. 
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Fig. 2. Basic geometry of the rectangular patch antenna fed by a 
microstrip line at a radiating edge. 
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Fig. 3. Equivalent network representation of the rectangular patch 
depicted in Fig. 2. 
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and their expressions are given in [7] as 
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where λ0 and k0 = 2π/λ0 are the wavelength and the wave 
number of the vacuum, respectively.  

The characteristic impedance and the propagation constant 
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of the transmission line depicted in Fig. 3 are expressed in 
terms of the microstrip line parameters as 
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where the effective dielectric constant effr,ε is given by 

,
W
d121

2
1ε

2
1εε

2/1
rr

effr,

−







 +

−
+

+
=          (3) 

and W/d ≥ 1. 

Using (1) through (3) and the equivalent network 
representation given in Fig. 3, it is possible to calculate in 
closed form the input impedance ZIN of the radiating element 
as a function of frequency. 

Since the output stage of the amplifier is characterized by low 
output impedance, a matching network between the antenna and 
the amplifier is required. Such a network can be designed using a 
nonuniform transmission line (NUTL) as sketched in Fig. 4. The 
design should also take into account that the NUTL has to 
behave not only as a matching structure, but also as a filtering 
structure in order to suppress the undesired high harmonic 
contributions coming from the amplifier. 

 
 

Fig. 4. Equivalent network representation of the matching/filtering
structure consisting of an NUTL. 
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III. Design of the NUTL Filtering Structure 

In this section, we propose an approach based on Orlov’s 
formula [8] to design the NUTL acting as both a filtering and 
matching structure between the antenna and the amplifier 
output stage. 

The goal therefore is to develop an effective design 
technique in order to derive the proper impedance profile, Z0(x) 
of the nonuniform structure depicted in Fig. 4, capable of both 
reflecting back the higher harmonics coming from the 

amplifier and conveying the signal at the resonance frequency 
to the patch. In order to conduct such a design, we can use 
Orlov’s synthesis formula in [8]: 
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where k is the spatial frequency associated to the spatial 
variable x, and p(x) is directly related to the characteristic 
impedance of the NUTL as follows: 
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whereas Γ0(k) is the reflection coefficient on the load section 
reported as x = 0 and expressed by 
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and Γ(k) is the reflection coefficient of the NUTL referred to 
as x = 0 function of frequency and is given by 
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where f0 is the central frequency, c0 is the speed of light in the 
vacuum and Q is the filter quality factor. The latter formula 
ensures a stop-band filtering behavior, and its parameters f0 and 
Q should be designed for reflecting back the higher harmonics 
coming from the amplifier and for allowing the propagation at 
the fundamental operating frequency of the patch. 

Once the integral in (4) has been solved numerically, the 
characteristic impedance profile of the nonuniform transmission 
line placed in between the patch and the amplifier can be finally 
obtained, solving the first-order differential of (5) as 
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From (8) then, calculating the required profile for the width 
of the microstrip line conductor is a straightforward matter, 
using the common microstrip formulas reported in [7]. 

IV. Numerical Results 

The theory presented in the previous sections is applied here 
to synthesize an amplifier-based active antenna layout for 
wireless local area network (WLAN) purposes.  
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The lower band operating frequency of the Wi-Fi standard 
for WLAN applications is fr = 2.4 GHz. In order to match this 
requirement, the rectangular microstrip patch antenna has been 
designed with the following electrical and geometrical 
parameters: d = 1 mm, εr = 2.33 (RT-duroid) for the substrate, 
and W = 5 cm and L = 3.9 cm for the patch. 

With this ensemble of values it is possible to evaluate the 
remaining quantities necessary for the synthesis using (1) 
through (3): εr,eff = 2.19, Zc = 10.87 Ω, and β = 31fr m-1. The 
corresponding input impedance of the rectangular patch is 
depicted in Fig. 5(a). Please note the higher order modes 
sustained by the patch geometry. Assuming that the 
characteristic impedance of the NUTL at the feed section (x = 
L) is Z0L = 100 Ω, the corresponding amplitude of the reflection 
coefficient at the patch input port is depicted in Fig. 5(b). 

The NUTL microstrip filter is integrated on the same 
substrate of the antenna and should suppress the higher order 
harmonics coming from the amplifier at 4.8 and 7.2 GHz, 
respectively, which are very close to the resonance frequencies 
of the higher order modes of the patch. 

Using (7) and assuming quality factor Q = 1.2 and central 
frequency f0 = 6 GHz, the reflection coefficient amplitude of 
the NUTL filter to be designed is shown in Fig. 6. It is 
worthwhile to point out that the filter parameters Q and f0 have 
been chosen in order to have a stop-band big enough to include 
both the second and third harmonics. 

The numerical evaluation of the integral in (4) has been 
performed exploiting the periodicity of the integrand for high k 
values and the related symmetry properties. Once the function 
p(x) is known numerically, the line impedance profile can be 
straightforwardly obtained from (8). 

The impedance profile and the effectiveness of the 
filtering/matching structure designed depend also on the length 
of the NUTL. This length represents a degree of freedom in the 
present design and can be chosen to fulfill practical requirements 
(i.e., space occupancy of the device, etc.) In the following, we 
present the results for two different choices of the NUTL length. 
Particularly in Figs. 7(a) and 7(b), the characteristic impedance 
profiles of the NUTL are shown for the line lengths L = 1 cm 
and L = 2 cm, respectively, while the output impedance of the 
amplifier is Zout = 50 Ω. 

The nonuniform microstrip width can be easily computed 
from the profiles in Fig. 7 by inversion of the common 
formulas used to calculate the characteristic impedance of the 
microstrip transmission line [7]. Please note that at x = 0 and at 
x = L, the matching requirements are satisfied (50 Ω at x = 0 
and 100 Ω at x = L). 

As a countercheck, the reflection coefficient behavior of the 
NUTL filters now designed can be determined from the 
following analysis formula (9) given in [8]: 

 

Fig. 5. (a) Input impedance and (b) reflection coefficient of the 
rectangular patch having the first resonance at 2.4 GHz. 
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Fig. 6. Reflection coefficient amplitude of the NUTL filter to be 
designed. 
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Fig. 7. Normalized characteristic impedance of the NUTL acting
as a filter to cut off the higher harmonics coming from the
amplifier: (a) L=1 cm and (b) L=2 cm. 
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Fig. 8. Reflection coefficient at the input port of the NUTL filter
considering the microstrip patch antenna as load. 
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Plugging in (9), the result obtained for p(x) from the 
numerical integration in the previous design, and plotting the 
amplitude of the reflection coefficient as a function of 
frequency, we should find a good transmission around the 

antenna working frequency (2.4 GHz) and a high rejection at 
both 4.8 GHz and 7.2 GHz (frequencies of the 2nd and 3rd 
harmonics coming from the amplifier). 

This behavior is amply confirmed in Fig. 8 for the case L = 2 
cm, where the frequency range of analysis has been extended 
up to 15 GHz to show that the patch modes with resonant 
frequencies higher than 8 GHz are not affected by the NUTL 
when the antenna operates as a receiving device. 

V. Conclusions 

In this paper, a synthesis technique for nonuniform filtering 
structures to be employed in active integrated antenna layouts 
has been presented. A higher-harmonic microstrip suppresser 
has been designed via Orlov’s synthesis formula. In order to 
demonstrate the capability of the approach, it has been applied 
in the design of a nonuniform filtering/matching transmission 
line for a Wi-Fi active integrated antenna working at 2.4 GHz. 
The numerical results presented support the proposed 
theoretical approach. 
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