• 제목/요약/키워드: integral solutions

검색결과 428건 처리시간 0.02초

Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings

  • Belbachir, Nasrine;Draich, Kada;Bousahla, Abdelmoumen Anis;Bourada, Mohamed;Tounsi, Abdelouahed;Mohammadimehr, M.
    • Steel and Composite Structures
    • /
    • 제33권1호
    • /
    • pp.81-92
    • /
    • 2019
  • The present paper addresses a refined plate theoryin order to describe the response of anti-symmetric cross-ply laminated plates subjected to a uniformlydistributed nonlinear thermo-mechanical loading. In the present theory, the undetermined integral terms are used and the variables number is reduced to four instead of five or more in other higher-order theories. The boundary conditions on the top and the bottom surfaces of the plate are satisfied; hence the use of the transverse shear correction factors isavoided. The principle of virtual work is used to obtain governing equations and boundary conditions. Navier solution for simply supported plates is used to derive analytical solutions. For the validation of the present theory, numerical results for displacements and stressesare compared with those of classical, first-order, higher-order and trigonometricshear theories reported in the literature.

Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory

  • Draiche, Kada;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Alwabli, Afaf S.;Tounsi, Abdeldjebbar;Mahmoud, S.R.
    • Computers and Concrete
    • /
    • 제24권4호
    • /
    • pp.369-378
    • /
    • 2019
  • This paper aims to present an analytical model to predict the static analysis of laminated reinforced composite plates subjected to sinusoidal and uniform loads by using a simple first-order shear deformation theory (SFSDT). The most important aspect of the present theory is that unlike the conventional FSDT, the proposed model contains only four unknown variables. This is due to the fact that the inplane displacement field is selected according to an undetermined integral component in order to reduce the number of unknowns. The governing differential equations are derived by employing the static version of principle of virtual work and solved by applying Navier's solution procedure. The non-dimensional displacements and stresses of simply supported antisymmetric cross-ply and angle-ply laminated plates are presented and compared with the exact 3D solutions and those computed using other plate theories to demonstrate the accuracy and efficiency of the present theory. It is found from these comparisons that the numerical results provided by the present model are in close agreement with those obtained by using the conventional FSDT.

Object Precision 방법을 이용한 복합 구조물의 RCS 해석 (RCS Analysis of Complex Structures Using Object Precision Method)

  • 김국현;김진형;조대승
    • 대한조선학회논문집
    • /
    • 제42권2호
    • /
    • pp.159-164
    • /
    • 2005
  • Monostatic RCS analysis of complex structures has been done with a combined method of physical and geometric optics, commonly applied to high frequency electromagnetic backscattering problems. In the analysis, the complex structure is modeled as a number of flat surfaces and the RCS of whole structure is calculated by summing RCS of each surface, which can be obtained from an analytical solution of flat surface phase integral derived from physical optics. The reflected and hidden surfaces are searched by an object precision method based on adaptive triangular beam method, which can take account for effects of multiple reflections and polarizations of electromagnetic wave. The validity of the presented RCS analysis method has been verified by comparing with exact solutions and measured data for various structures.

Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory

  • Zarga, Djaloul;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제32권3호
    • /
    • pp.389-410
    • /
    • 2019
  • In this article, a simple quasi-3D shear deformation theory is employed for thermo-mechanical bending analysis of functionally graded material (FGM) sandwich plates. The displacement field is defined using only 5 variables as the first order shear deformation theory (FSDT). Unlike the other high order shear deformation theories (HSDTs), the present formulation considers a new kinematic which includes undetermined integral variables. The governing equations are determined based on the principle of virtual work and then they are solved via Navier method. Analytical solutions are proposed to provide the deflections and stresses of simply supported FGM sandwich structures. Comparative examples are presented to demonstrate the accuracy of the present theory. The effects of gradient index, geometrical parameters and thermal load on thermo-mechanical bending response of the FG sandwich plates are examined.

Assessment of new 2D and quasi-3D nonlocal theories for free vibration analysis of size-dependent functionally graded (FG) nanoplates

  • Bendaho, Boudjema;Belabed, Zakaria;Bourada, Mohamed;Benatta, Mohamed Atif;Bourada, Fouad;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • 제7권4호
    • /
    • pp.277-292
    • /
    • 2019
  • In this present paper, a new two dimensional (2D) and quasi three dimensional (quasi-3D) nonlocal shear deformation theories are formulated for free vibration analysis of size-dependent functionally graded (FG) nanoplates. The developed theories is based on new description of displacement field which includes undetermined integral terms, the issues in using this new proposition are to reduce the number of unknowns and governing equations and exploring the effects of both thickness stretching and size-dependency on free vibration analysis of functionally graded (FG) nanoplates. The nonlocal elasticity theory of Eringen is adopted to study the size effects of FG nanoplates. Governing equations are derived from Hamilton's principle. By using Navier's method, analytical solutions for free vibration analysis are obtained through the results of eigenvalue problem. Several numerical examples are presented and compared with those predicted by other theories, to demonstrate the accuracy and efficiency of developed theories and to investigate the size effects on predicting fundamental frequencies of size-dependent functionally graded (FG) nanoplates.

Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory

  • Bennai, Riadh;Fourn, Hocine;Atmane, Hassen Ait;Tounsi, Abdelouahed;Bessaim, Aicha
    • Wind and Structures
    • /
    • 제28권1호
    • /
    • pp.49-62
    • /
    • 2019
  • In this paper, an analytical analysis for the study of vibratory behavior and wave propagation of functionally graded plates (FGM) is presented based on a high order shear deformation theory. The manufacture of these plates' defects can appear in the form of porosity. This latter can question and modify the global behavior of such plates. A new shape of the distribution of porosity according to the thickness of the plate was used. The field of displacement of this theory is present of indeterminate integral variables. The modulus of elasticity and the mass density of these plates are assumed to vary according to the thickness of the plate. Equations of motion are derived by the principle of minimization of energies. Analytical solutions of free vibration and wave propagation are obtained for FGM plates simply supported by integrating the analytic dispersion relation. Illustrative examples are given also to show the effects of variation of various parameters such as(porosity parameter, material graduation, thickness-length ratio, porosity distribution) on vibration and wave propagation of FGM plates.

The use of mobile computing devices in microsurgery

  • Pafitanis, Georgios;Hadjiandreou, Michalis;Miller, Robert;Mason, Katrina;Theodorakopoulou, Evgenia;Sadri, Amir;Taylor, Kirsten;Myers, Simon
    • Archives of Plastic Surgery
    • /
    • 제46권2호
    • /
    • pp.102-107
    • /
    • 2019
  • Mobile computing devices (MCDs), such as smartphones and tablets, are revolutionizing medical practice. These devices are almost universally available and offer a multitude of capabilities, including online features, streaming capabilities, high-quality cameras, and numerous applications. Within the surgical field, MCDs are increasingly being used for simulations. Microsurgery is an expanding field of surgery that presents unique challenges to both trainees and trainers. Simulation-based training and assessment in microsurgery currently play an integral role in the preparation of trainee surgeons in a safe and informative environment. MCDs address these challenges in a novel way by providing valuable adjuncts to microsurgical training, assessment, and clinical practice through low-cost, effective, and widely accessible solutions. Herein, we present a review of the capabilities, accessibility, and relevance of MCDs for technical skills acquisition, training, and clinical microsurgery practice, and consider the possibility of their wider use in the future of microsurgical training and education.

Free vibration response of functionally graded Porous plates using a higher-order Shear and normal deformation theory

  • Bennai, Riadh;Atmane, Hassen Ait;Ayache, Belqassim;Tounsi, Abdelouahed;Bedia, E.A. Adda;Al-Osta, Mohammed A.
    • Earthquakes and Structures
    • /
    • 제16권5호
    • /
    • pp.547-561
    • /
    • 2019
  • In this work, a new analytical approach using a theory of a high order hyperbolic shear deformation theory (HSDT) has been developed to study the free vibration of plates of functionally graduated material (FGM). This theory takes into account the effect of stretching the thickness. In contrast to other conventional shear deformation theories, the present work includes a new displacement field that introduces indeterminate integral variables. During the manufacturing process of these plates defects can appear as porosity. The latter can question and modify the global behavior of such plates. The materials constituting the plate are assumed to be gradually variable in the direction of height according to a simple power law distribution in terms of the volume fractions of the constituents. The motion equations are derived by the Hamilton principle. Analytical solutions for free vibration analysis are obtained for simply supported plates. The effects of stretching, the porosity parameter, the power law index and the length / thickness ratio on the fundamental frequencies of the FGM plates are studied in detail.

Binomial Distribution Based Reputation for WSNs: A Comprehensive Survey

  • Wei, Zhe;Yu, Shuyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권10호
    • /
    • pp.3793-3814
    • /
    • 2021
  • Most secure solutions like cryptography are software based and they are designed to mainly deal with the outside attacks for traditional networks, but such soft security is hard to be implemented in wireless sensor networks to counter the inside attacks from internal malicious nodes. To address this issue, reputation has been introduced to tackle the inside malicious nodes. Reputation is essentially a stimulating mechanism for nodes' cooperation and is employed to detect node misbehaviors and improve the trust-worthiness between individual nodes. Among the reputation models, binomial distribution based reputation has many advantages such as light weight and ease of implementation in resource-constraint sensor nodes, and accordingly researchers have proposed many insightful related methods. However, some of them either directly use the modelling results, apply the models through simple modifications, or only use the required components while ignoring the others as an integral part of the whole model, this topic still lacks a comprehensive and systematical review. Thus the motivation of this study is to provide a thorough survey concerning each detailed functional components of binomial distribution based reputation for wireless sensor networks. In addition, based on the survey results, we also argue some open research problems and suggest the directions that are worth future efforts. We believe that this study is helpful to better understanding the reputation modeling mechanism and its components for wireless sensor networks, and can further attract more related future studies.

The Blockchain-Based Decentralized Approaches for Cloud Computing to Offer Enhanced Quality of Service in terms of Privacy Preservation and Security: A Review.

  • Arun Kumar, B.R.;Komala, R
    • International Journal of Computer Science & Network Security
    • /
    • 제21권4호
    • /
    • pp.115-122
    • /
    • 2021
  • In the recent past enormous enterprise applications have migrated into the cloud computing (CC). The researchers have contributed to this ever growing technology and as a result several innovations strengthened to offer the quality of service (QoS) as per the demand of the customer. It was treated that management of resources as the major challenge to offer the QoS while focusing on the trade-offs among the performance, availability, reliability and the cost. Apart from these regular key focuses to meet the QoS other key issues in CC are data integrity, privacy, transparency, security and legal aspects (DIPTSL). This paper aims to carry out the literature survey by reflecting on the prior art of the work with regard to QoS in CC and possible implementation of block chain to implement decentralised CC solutions governing DIPTSL as an integral part of QoS.