• 제목/요약/키워드: integral polygons

검색결과 3건 처리시간 0.018초

ABSOLUTE IRREDUCIBILITY OF BIVARIATE POLYNOMIALS VIA POLYTOPE METHOD

  • Koyuncu, Fatih
    • 대한수학회지
    • /
    • 제48권5호
    • /
    • pp.1065-1081
    • /
    • 2011
  • For any field F, a polynomial f $\in$ F[$x_1,x_2,{\ldots},x_k$] can be associated with a polytope, called its Newton polytope. If the polynomial f has integrally indecomposable Newton polytope, in the sense of Minkowski sum, then it is absolutely irreducible over F, i.e., irreducible over every algebraic extension of F. We present some results giving new integrally indecomposable classes of polygons. Consequently, we have some criteria giving many types of absolutely irreducible bivariate polynomials over arbitrary fields.

자연요소법에 기초한 회전자유도가 없는 평판요소 (Rotation-Free Plate Element Based on the Natural Element Method)

  • 조진래;최주형;이홍우
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.513-518
    • /
    • 2007
  • A polygon-wise constant curvature natural element approximation is presented in this paper for the numerical implementation of the abstract Kirchhoff plate model. The strict continuity requirement in the displacement field is relaxed by converting the area integral of the curvatures into the boundary integral along the Voronoi boundary. Curvatures and bending moments are assumed to be constant within each Voronoi polygon, and the Voronoi-polygon-wise constant curvatures are derived in a selective manner for the sake of the imposition of essential boundary conditions. The numerical results illustrating the proposed method are also given.

  • PDF

선분, 직선, 반직선의 학습 내용과 학습 계열 분석 (Contents and Sequences for Line Segments, Straight Lines, and Rays in Elementary Mathematics Curricula and Textbooks)

  • 김상미
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제37권4호
    • /
    • pp.635-652
    • /
    • 2023
  • 이 연구는 초등학교 수준에서 '선'의 학습 내용 즉, 선분, 직선, 반직선 등의 학습 내용과 학습 계열을 분석하였다. 수학과 교육과정 및 수학 교과서에서 1차부터 7차까지, 그 이후 2007 개정, 2009 개정, 2015 개정, 2022 개정에 이르기까지 각 시기에 선분, 직선, 반직선을 도입하는 시기와 그 표현을 통하여 학습 내용을 분석하였고, 그 학습 순서 및 활동 중점을 통하여 학습 계열을 분석하였다. 학습 내용의 도입 시기와 정의 방식의 변화 분석에서 본다면, 선분, 직선, 반직선을 주로 2차원 평면도형의 그 구성 요소로서 즉, 다각형의 변이나 각의 변으로서 다루어왔지만, 수학과 교과서에 비추어 볼 때 기초 도형으로서 선분, 직선, 반직선이라는 다양한 선을 탐색할 기회가 부족하였다. 둘째, 선분, 직선, 반직선의 정의에서 점과 선의 관계 설정 및 선들 사이의 관계 설정에 따라 개념 형성에 영향을 주며 이들을 비교하여 그 장단점을 교수학습 관련 연구 및 근거들이 요구된다. 셋째, 선분에서 곧은 선(최단거리)의 아이디어와 직선과 반직선에서 끝없이 나아가는 선(무한성)의 아이디어는 수학의 핵심적인 아이디어로서, 생활 주변의 여러 사물에서 선의 개념을 형성하고 점차 구체적인 선을 이상화하여 유클리드 기하의 도형으로 나아가도록 상상하고 경험하는 활동이 필요하다.