• Title/Summary/Keyword: integral boundary conditions

Search Result 206, Processing Time 0.02 seconds

Static and stress analyses of bi-directional FG porous plate using unified higher order kinematics theories

  • Mohamed, Salwa;Assie, Amr E.;Mohamed, Nazira;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.305-330
    • /
    • 2022
  • This article aims to investigate the static deflection and stress analysis of bi-directional functionally graded porous plate (BDFGPP) modeled by unified higher order kinematic theories to include the shear stress effects, which not be considered before. Different shear functions are described according to higher order models that satisfy the zero-shear influence at the top and bottom surfaces, and hence refrain from the need of shear correction factor. The material properties are graded through two spatial directions (i.e., thickness and length directions) according to the power law distribution. The porosities and voids inside the material constituent are described by different cosine functions. Hamilton's principle is implemented to derive the governing equilibrium equation of bi-directional FG porous plate structures. An efficient numerical differential integral quadrature method (DIQM) is exploited to solve the coupled variable coefficients partial differential equations of equilibrium. Problem validation and verification have been proven with previous prestigious work. Numerical results are illustrated to present the significant impacts of kinematic shear relations, gradation indices through thickness and length, porosity type, and boundary conditions on the static deflection and stress distribution of BDFGP plate. The proposed model is efficient in design and analysis of many applications used in nuclear, mechanical, aerospace, naval, dental, and medical fields.

Economic optimization and dynamic analysis of nanocomposite shell conveying viscous fluid exposed to the moving load based on DQ-IQ method

  • Ali Chen;Omidreza Masoudian;Gholamreza Soleimani Jafari
    • Structural Engineering and Mechanics
    • /
    • v.91 no.6
    • /
    • pp.567-581
    • /
    • 2024
  • In this paper, an effort is made to present a detailed analysis of dynamic behavior of functionally graded carbon nanotube-reinforced pipes under the influence of an accelerating moving load. Again, the material properties of the nanocomposite pipe will be determined by following the rule of mixtures, considering a specific distribution and volume fraction of CNTs within the pipe. In the present study, temperature-dependent material properties have been considered. The Navier-Stokes equations are used to determine the radial force developed by the viscous fluid. The structural analysis has been carried out based on Reddy's higher-order shear deformation shell theory. The equations of motion are derived using Hamilton's principle. The resulting differential equations are solved using the Differential Quadrature and Integral Quadrature methods, while the dynamic responses are computed with the use of Newmark's time integration scheme. These are many parameters, ranging from those connected with boundary conditions to nanotube geometrical characteristics, velocity, and acceleration of the moving load, and, last but not least, volume fraction and distribution pattern of CNTs. The results indicate that any increase in the volume fraction of CNTs will lead to a decrease in the transient deflection of the structure. It is also observed that maximum displacement occurs with an increase in the load speed, slightly delayed compared to decelerating motion.

An efficient shear deformation theory with stretching effect for bending stress analysis of laminated composite plates

  • Abbas, Soufiane;Benguediab, Soumia;Draiche, Kada;Bakora, Ahmed;Benguediab, Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.365-380
    • /
    • 2020
  • The focus of this paper is to develop an analytical approach based on an efficient shear deformation theory with stretching effect for bending stress analysis of cross-ply laminated composite plates subjected to transverse parabolic load and line load by using a new kinematic model, in which the axial displacements involve an undetermined integral component in order to reduce the number of unknowns and a sinusoidal function in terms of the thickness coordinate to include the effect of transverse shear deformation. The present theory contains only five unknowns and satisfies the zero shear stress conditions on the top and bottom surfaces of the plate without using any shear correction factors. The governing differential equations and its boundary conditions are derived by employing the static version of principle of virtual work. Closed-form solutions for simply supported cross-ply laminated plates are obtained applying Navier's solution technique, and the numerical case studies are compared with the theoretical results to verify the utility of the proposed model. Lastly, it can be seen that the present outlined theory is more accurate and useful than some higher-order shear deformation theories developed previously to study the static flexure of laminated composite plates.

A Potential-Based Panel Method for the Analysis of A Two-Dimensional Super-Cavitating Hydrofoil (양력판(揚力板) 이론(理論)에 의(依)한 2차원(次元) 수중익(水中翼)의 초월(超越) 공동(空洞) 문제(問題) 해석(解析))

  • Y.G. Kim;C.S. Lee;J.T. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.159-173
    • /
    • 1991
  • This paper describes a potential-based panel method formulated for the analysis of a super-cavitating two-dimensional hydrofoil. The method employs normal dipoles and sources distributed on the foil and cavity surfaces to represent the potential flow around the cavitating hydrofoil. The kinematic boundary condition on the wetted portion of the foil surface is satisfied by requiring that the total potential vanish in the fictitious inner flow region of the foil, and the dynamic boundary condition on the cavity surface is satisfied by requiring thats the potential vary linearly, i.e., the tangential velocity be constant. Green's theorem then results in a potential-based integral equation rather than the usual velocity-based formulation of Hess & Smith type. With the singularities distributed on the exact hydrofoil surface, the pressure distributions are predicted with improved accuracy compared to those of the linearized lilting surface theory, especially near the leading edge. The theory then predicts the cavity shape and cavitation number for an assumed cavity length. To improve the accuracy, the sources and dipoles on the cavity surface are moved to the newly computed cavity surface, where the boundary conditions are satisfied again. This iteration process is repeated until the results are converged. Characteristics of iteration and discretization of the present numerical method are much faster and more stable than the existing nonlinear theories. The theory shows good correlations with the existing theories and experimental results for the super-cavitating flow. In the region of small angles of attack, the present prediction shows and excellent comparison with the Geurst's linear theory. For the long cavity, the method recovers the trends of the Wu's nonlinear theory. In the intermediate regions of the short super-cavitation, the method compares very well with the experimental results of Parkin and also those of Silberman.

  • PDF

A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells

  • Zine, Abdallah;Tounsi, Abdelouahed;Draiche, Kada;Sekkal, Mohamed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.125-137
    • /
    • 2018
  • In this work, the bending and free vibration analysis of multilayered plates and shells is presented by utilizing a new higher order shear deformation theory (HSDT). The proposed involves only four unknowns, which is even less than the first shear deformation theory (FSDT) and without requiring the shear correction coefficient. Unlike the conventional HSDTs, the present one presents a novel displacement field which incorporates undetermined integral variables. The equations of motion are derived by using the Hamilton's principle. These equations are then solved via Navier-type, closed form solutions. Bending and vibration results are found for cylindrical and spherical shells and plates for simply supported boundary conditions. Bending and vibration problems are treated as individual cases. Panels are subjected to sinusoidal, distributed and point loads. Results are presented for thick to thin as well as shallow and deep shells. The computed results are compared with the exact 3D elasticity theory and with several other conventional HSDTs. The proposed HSDT is found to be precise compared to other several existing ones for investigating the static and dynamic response of isotropic and multilayered composite shell and plate structures.

A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis

  • Kaddari, Miloud;Kaci, Abdelhakim;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Bourada, Fouad;Tounsi, Abdeldjebbar;Bedia, E.A. Adda;Al-Osta, Mohammed A.
    • Computers and Concrete
    • /
    • v.25 no.1
    • /
    • pp.37-57
    • /
    • 2020
  • This work investigates a new type of quasi-3D hyperbolic shear deformation theory is proposed in this study to discuss the statics and free vibration of functionally graded porous plates resting on elastic foundations. Material properties of porous FG plate are defined by rule of the mixture with an additional term of porosity in the through-thickness direction. By including indeterminate integral variables, the number of unknowns and governing equations of the present theory is reduced, and therefore, it is easy to use. The present approach to plate theory takes into account both transverse shear and normal deformations and satisfies the boundary conditions of zero tensile stress on the plate surfaces. The equations of motion are derived from the Hamilton principle. Analytical solutions are obtained for a simply supported plate. Contrary to any other theory, the number of unknown functions involved in the displacement field is only five, as compared to six or more in the case of other shear and normal deformation theories. A comparison with the corresponding results is made to verify the accuracy and efficiency of the present theory. The influences of the porosity parameter, power-law index, aspect ratio, thickness ratio and the foundation parameters on bending and vibration of porous FG plate.

FDTD Analysis of Lossy Multiconductor Transmission Lines Terminated in Linear Loads (선형소자로 종단된 손실이 있는 다중 전송선의 FDTD 해석)

  • 박범준;주재철;이형영;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.3
    • /
    • pp.419-428
    • /
    • 2000
  • Multiconductor transmission line(MTL) equations are solved by FDTD(Finite-Difference Time-Domain) method to predict crosstalk and fields to transmission line coupling on lossy multiconductor transmission lines terminated in arbitrary linear loads. Skin effect losses as well as dc losses are included in the analysis. In order to increase computational efficiency, the convolution integral of internal impedance of conductors and the line currents is computed by using Prony method. For boundary conditions of MTLs terminated in linear loads, state-variable formulation is adopted. The simulated results by FDTD method are compared with the measured ones obtained by using TEM cell. The predictions are in good agreement with the measurements. In addition, it has been found that skin effect losses as well as dc losses of the conductors should be included for accurate predictions on relatively high loss transmission lines such as PCB. It has also been found that dc losses and skin-effect losses affect late-time responses and early-time responses, respectively.

  • PDF

Nonlinear forced vibration of FG-CNTs-reinforced curved microbeam based on strain gradient theory considering out-of-plane motion

  • Allahkarami, Farshid;Nikkhah-bahrami, Mansour;Saryazdi, Maryam Ghassabzadeh
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.673-691
    • /
    • 2018
  • The main goal of this research is to examine the in-plane and out-of-plane forced vibration of a curved nanocomposite microbeam. The in-plane and out-of-plane displacements of the structure are considered based on the first order shear deformation theory (FSDT). The curved microbeam is reinforced by functionally graded carbon nanotubes (FG-CNTs) and thus the extended rule of mixture is employed to estimate the effective material properties of the structure. Also, the small scale effect is captured using the strain gradient theory. The structure is rested on a nonlinear orthotropic viscoelastic foundation and is subjected to concentrated transverse harmonic external force, thermal and magnetic loads. The derivation of the governing equations is performed using energy method and Hamilton's principle. Differential quadrature (DQ) method along with integral quadrature (IQ) and Newmark methods are employed to solve the problem. The effect of various parameters such as volume fraction and distribution type of CNTs, boundary conditions, elastic foundation, temperature changes, material length scale parameters, magnetic field, central angle and width to thickness ratio are studied on the frequency and force responses of the structure. The results indicate that the highest frequency and lowest vibration amplitude belongs to FGX distribution type while the inverse condition is observed for FGO distribution type. In addition, the hardening-type response of the structure with FGX distribution type is more intense with respect to the other distribution types.

A novel hyperbolic plate theory including stretching effect for free vibration analysis of advanced composite plates in thermal environments

  • Elmascri, Setti;Bessaim, Aicha;Taleb, Ouahiba;Houari, Mohammed Sid Ahmed;Mohamed, Sekkal;Bernard, Fabrice;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.193-209
    • /
    • 2020
  • This paper presents a new hyperbolic shear deformation plate theory including the stretching effect for free vibration of the simply supported functionally graded plates in thermal environments. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. This theory has only five unknowns, which is even less than the other shear and normal deformation theories. The present one has a new displacement field which introduces undetermined integral variables. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume power laws of the constituents. The equation of motion of the vibrated plate obtained via the classical Hamilton's principle and solved using Navier's steps. The accuracy of the proposed solution is checked by comparing the present results with those available in existing literature. The effects of the temperature field, volume fraction index of functionally graded material, side-to-thickness ratio on free vibration responses of the functionally graded plates are investigated. It can be concluded that the present theory is not only accurate but also simple in predicting the natural frequencies of functionally graded plates with stretching effect in thermal environments.

Free vibration of FGM plates with porosity by a shear deformation theory with four variables

  • Yousfi, Mahfoud;Atmane, Hassen Ait;Meradjah, Mustapha;Tounsi, Abdelouahed;Bennai, Riadh
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.353-368
    • /
    • 2018
  • In this work, a high order hyperbolic shear deformation theory with four variables is presented to study the vibratory behavior of functionally graduated plates. The field of displacement of the theory used in this work is introduced indeterminate integral variables. In addition, the effect of porosity is studied. It is assumed that the material characteristics of the porous FGM plate, varies continuously in the direction of thickness as a function of the power law model in terms of volume fractions of constituents taken into account the homogeneous distribution of porosity. The equations of motion are obtained using the principle of virtual work. An analytical solution of the Navier type for free vibration analysis is obtained for a FGM plate for simply supported boundary conditions. A comparison of the results obtained with those of the literature is made to verify the accuracy and efficiency of the present theory. It can be concluded from his results that the current theory is not only accurate but also simple for the presentation of the response of free vibration and the effect of porosity on the latter.