• Title/Summary/Keyword: integer divider

Search Result 13, Processing Time 0.018 seconds

A Delta-Sigma Fractional-N Frequency Synthesizer for Quad-Band Multi-Standard Mobile Broadcasting Tuners in 0.18-μm CMOS

  • Shin, Jae-Wook;Kim, Jong-Sik;Kim, Seung-Soo;Shin, Hyun-Chol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.4
    • /
    • pp.267-273
    • /
    • 2007
  • A fractional-N frequency synthesizer supports quadruple bands and multiple standards for mobile broadcasting systems. A novel linearized coarse tuned VCO adopting a pseudo-exponential capacitor bank structure is proposed to cover the wide bandwidth of 65%. The proposed technique successfully reduces the variations of KVCO and per-code frequency step by 3.2 and 2.7 times, respectively. For the divider and prescaler circuits, TSPC (true single-phase clock) logic is extensively utilized for high speed operation, low power consumption, and small silicon area. Implemented in $0.18-{\mu}m$ CMOS, the PLL covers $154{\sim}303$ MHz (VHF-III), $462{\sim}911$ MHz (UHF), and $1441{\sim}1887$ MHz (L1, L2) with two VCO's while dissipating 23 mA from 1.8 V supply. The integrated phase noise is 0.598 and 0.812 degree for the integer-N and fractional-N modes, respectively, at 750 MHz output frequency. The in-band noise at 10 kHz offset is -96 dBc/Hz for the integer-N mode and degraded only by 3 dB for the fractional-N mode.

A Clock Regenerator using Two 2nd Order Sigma-Delta Modulators for Wide Range of Dividing Ratio

  • Oh, Seung-Wuk;Kim, Sang-Ho;Im, Sang-Soon;Ahn, Yong-Sung;Kang, Jin-Ku
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.10-17
    • /
    • 2012
  • This paper presents a clock regenerator using two $2^{nd}$ order ${\sum}-{\Delta}$ (sigma-delta) modulators for wide range of dividing ratio as defined in HDMI standard. The proposed circuit adopts a fractional-N frequency synthesis architecture for PLL-based clock regeneration. By converting the integer and decimal part of the N and CTS values in HDMI format and processing separately at two different ${\sum}-{\Delta}$ modulators, the proposed circuit covers a very wide range of the dividing ratio as HDMI standard. The circuit is fabricated using 0.18 ${\mu}m$ CMOS and shows 13 mW power consumption with an on-chip loop filter implementation.

Design of a Dual band CMOS Frequency Synthesizer for GSM and WCDMA (GSM / WCDMA 통신용 이중대역 CMOS 주파수 합성기 설계)

  • Han, Yun-Tack;Yoon, Kwang-Sub
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.435-436
    • /
    • 2008
  • This paper presents a dual band frequency synthesizer for GSM and Wideband CDMA which is designed in a standard 0.13um CMOS 1P6M process. The shared components include phase frequency detector (PFD), charge pump (CP), loop filter, integer frequency divider(128/129 DMP, 4bit PC, 3bit SC) and Low noise Ring-VCO. A high-speed low power dual modulus prescaler is proposed to operate up to 2.1GHz at 3.3V supply voltage with 2mW power consumption by simulation. The simulated phase noise of VCO is -101dBc/Hz at 200kHz offset frequency from 1.9GHz.

  • PDF