• 제목/요약/키워드: intake towers

검색결과 12건 처리시간 0.021초

Experimental study of dynamic interaction between group of intake towers and water

  • Wang, Haibo;Li, Deyu;Tang, Bihua
    • Earthquakes and Structures
    • /
    • 제6권2호
    • /
    • pp.163-179
    • /
    • 2014
  • Dynamic test with scaled model of a group of intake towers was performed to study the dynamic interaction between water and towers. The test model consists of intake tower or towers, massless foundation near the towers and part of water to simulate the dynamic interaction of tower-water-foundation system. Models with a single tower and 4 towers were tested to find the different influences of the water on the tower dynamic properties, seismic responses as well as dynamic water-tower interaction. It is found that the water has little influence on the resonant frequency in the direction perpendicular to flow due to the normal force transfer role of the water in the contraction joints between towers. By the same effect of the water, maximum accelerations in the same direction on 4 towers tend to close to each other as the water level increased from low to normal level. Moreover, the acceleration responses of the single tower model are larger than the group of towers model in both directions in general. Within 30m from the surface of water, hydrodynamic pressures were quite close for a single tower and group of towers model at two water levels. For points deeper than 30m, the pressures increased about 40 to 55% for the group of towers model than the single tower model at both water levels. In respect to the pressures at different towers, two mid towers experienced higher than two side towers, the deeper, the larger the difference. And the inside hydrodynamic pressures are more dependent on ground motions than the outside.

Sediment Control at Water Intake Structures in a River

  • Son, Kwang-Ik;Lee, Jae-Joon;Han, Kun-Yeon;Lee, Eul-Rae
    • Korean Journal of Hydrosciences
    • /
    • 제10권
    • /
    • pp.73-83
    • /
    • 1999
  • The intake towers of Buyeo W.T.P. in Keum river have being suffered from the sedimentation problems since the beginning of the operation. Impellers of the intake pumps have to the frequently changed due to the serious surface erosion. Thousands tons of sands are entrapped in the intake towers and equalization chambers of W.T.P. every year. Site surveying and numerical analysis were carried out to suggest an appropriate solution by understanding the general sedimentation regime of Keum river and causes of the sedimentation in the intake towers. Origin of the sediment could be found by the desk and site inspections. The validity of the used numerical models was examined by comparisons between the calculated bydraulic values and the measured ones during the specific periods. The design flow rate for the prediction of the future sedimentation regime of the rever was studied. The efficiency of the sediment control measures was also examined with the verified numerical models. Finally, it was found that the best solution could be a combination of three sediment control measures; increase the clearance between river bed and inlet, construct jetties at 2 kilometers upstream from the intake towers, and put vanes at the right side of the intake towers.

  • PDF

Development of a nonlinear seismic response capacity spectrum method for intake towers of dams

  • Cocco, Leonardo;Suarez, Luis E.;Matheu, Enrique E.
    • Structural Engineering and Mechanics
    • /
    • 제36권3호
    • /
    • pp.321-341
    • /
    • 2010
  • The seismic-induced failure of a dam could have catastrophic consequences associated with the sudden release of the impounded reservoir. Depending on the severity of the seismic hazard, the characteristics and size of the dam-reservoir system, preventing such a failure scenario could be a problem of critical importance. In many cases, the release of water is controlled through a reinforced-concrete intake tower. This paper describes the application of a static nonlinear procedure known as the Capacity Spectrum Method (CSM) to evaluate the structural integrity of intake towers subject to seismic ground motion. Three variants of the CSM are considered: a multimodal pushover scheme, which uses the idea proposed by Chopra and Goel (2002); an adaptive pushover variant, in which the change in the stiffness of the structure is considered; and a combination of both approaches. The effects caused by the water surrounding the intake tower, as well as any water contained inside the hollow structure, are accounted for by added hydrodynamic masses. A typical structure is used as a case study, and the accuracy of the CSM analyses is assessed with time history analyses performed using commercial and structural analysis programs developed in Matlab.

수치모형을 이용한 하상변동 연구 (A Study on the Sediment Movement Using Numerical Models)

  • 임창수;손광익;이재준;윤세의
    • 한국수자원학회논문집
    • /
    • 제32권2호
    • /
    • pp.131-142
    • /
    • 1999
  • 본 연구에서는 금강 부여취수구를 중심으로 한 금강본류의 상하류에 대한 수리적 특성 및 유사론적 특성을 파악하기 위하여 1차원 및 준2차원 수치해석적 유사모의 분석을 실시하였다. 1차원 유사이동 수치모형 모의분석은 HEC-6를 사용하였으며 준2차원 유사이동 수치모형 모의분석은 GSTARS를 이용하여 1988년부터 1996년까지에 대한 유사이동 수치모형 모의분석을 실시하여 프로그램의 현장 적용가능성을 분석한 후 1988년부터 2001년까지에 대한 예측을 통하여 금강 부여취수탑 주변에 대한 유사이동 현황분석을 실시하였다. 1988년 실측된 하상 실측 자료를 초기 하상자료로 하여 13년 후인 2001년의 장기하상변동을 예측한 결과 전체적으로는 금강본류를 따라 퇴적 및 침식이 반복되는 현황을 보이고 있고 금강 부여취수구 주변 및 취수구 하류부근에서는 최심하상고가 높아져 계속 퇴적되는 추세를 보여주고 있었다.

  • PDF

다수의 냉각탑이 설치된 옥상에서 냉각탑별 재유입률 예측 (Prediction of Reentering Ratio of Individual Cooling Towers Scattered on a Building Roof)

  • 이태구;문선애;유호선;이재헌
    • 설비공학논문집
    • /
    • 제18권11호
    • /
    • pp.923-932
    • /
    • 2006
  • In this paper, reentering ratio and cooling capacity of individual cooling towers arrayed on a building roof were studied by a numerical method. The number of 16 cooling towers were divided into 4 banks. It was considered the summer prevailing wind characteristics as west wind and south wind of 5 m/s. It was also considered the roofwall types as the curtainwall and the louverwall that had the outdoor air intake louver in the curtainwall. In this case, the louver was suggested as the solution that could prevent reentering phenomenon due to recirculation and interference of the discharge air. In the case of the curtainwall, the averaged reentering ratio are predicted 13.3% and 24.4% for the west and south wind of 5 m/s, respectively. In the case of the louverwall, the averaged reentering ratio are predicted 2.5% and 9.7% for the west and south wind of 5 m/s, respectively. Therefore, the louverwall is a appropriate solution for reducing the reentering phenomenon.

댐 취수탑 3차원 내진안전성 평가에서의 동수압 적용방법에 관한 연구 (Application of Hydrodynamic Pressure for Three­dimensional Earthquake Safety Analysis of Dam Intake Towers)

  • 송광석;민경욱;배정주;이지호
    • 한국지진공학회논문집
    • /
    • 제22권3호
    • /
    • pp.139-147
    • /
    • 2018
  • In the present study, effective hydrodynamic pressure modeling methods for three-dimensional earthquake safety analysis of a dam intake tower structure are investigated. Time history analysis results using the Westergaard added mass and Chopra added mass methods are compared with the one by the CASI (Coupled Acoustic Structural Interaction) method, which is accepted as giving almost exact solutions, to evaluate the difference in displacement response, stress and dynamic eccentricity. The 3D time history analysis of a realistic intake tower, which has the standard geometry widely used in Korea, shows that the Chopra added mass method gives similar results in displacement and stress and less conservative results in dynamic eccentricity to CASI ones, while the Westergaard added mass yields much more conservative results in all measures. This study suggests to use the CASI method directly for three-dimensional earthquake safety analysis of a dam intake tower, if computationally possible.

Interannual and Seasonal Fluctuations of Nutrients, Suspended Solids, Chlorophyll, and Trophic Sate along with Other General Water Quality Parameters Near Two Intake Towers of Daechung Dam

  • Lee, Sun-Goo;Han, Jeong-Ho;Lee, Jae-Hoon;An, Kwang-Guk
    • 생태와환경
    • /
    • 제43권4호
    • /
    • pp.492-502
    • /
    • 2010
  • The study objects were to analyze long-term and seasonal variations of nutrients (N, P), suspended solids, N:P ratios, algal chlorophyll, and trophic state along with general water quality parameters in four sampling sites including two intake tower sites supplying drinking water in Daechung Reservoir. For the analysis, we used water quality long-term data sampled during 1998~2007 by the Ministry of Environment, Korea. Interannual and seasonal trends in inflow and discharge near the intake tower facilities over the ten years were directly influenced by rainfall pattern. The distinct difference between wet year (2003) and dry year (2001) produced marked differences in water temperature, pH, dissolved oxygen, organic matter contents, nutrients, and these variables influenced algal biomass and trophic state. Values of TP varied depending on the year and locations sampled, but monthly mean TP always peaked during July~August when river inflow and precipitation were maxima. In contrast, TN varied little compared to TP, indicating lower influence by seasonal flow compared to phosphorus. The number of E. coli were highest in Site 2 (Chudong intake tower) and varied largely, whereas at other sites, the numbers were low and low variations. Contents of chlorophyll-${\alpha}$ (CHL), as an estimation of primary productivity, varied largely depending on the year and season. The maximum of CHL occurred at Muneu intake tower (S4) during 2006 when the precipitation and inflow were lowest. In contrast, another CHL peak was observed in Site 2 (Chudong intake tower) in 2006 when one of the largest typoons (Ewinia) occurred and river runoff were maximum. So the CHL maxima were associated with both wet year (high flow, high nutrient supply) and dry year (low flow, nutrient supply by littoral zone). Such conditions influenced trophic states, based on Trophic State Index of nutrients and CHL. Based on all analyses, we can provide some clues for management and protection strategies of two intake tower sites.

Dam-reservoir-foundation interaction effects on the modal characteristic of concrete gravity dams

  • Shariatmadar, H.;Mirhaj, A.
    • Structural Engineering and Mechanics
    • /
    • 제38권1호
    • /
    • pp.65-79
    • /
    • 2011
  • Concrete hydraulic structures such as: Dams, Intake Towers, Piers and dock are usually recognized as" Vital and Special Structures" that must have sufficient safety margin at critical conditions like when earthquake occurred as same as normal servicing time. Hence, to evaluate hydrodynamic pressures generated due to seismic forces and Fluid-Structure Interaction (FSI); introduction to fluid-structure domains and interaction between them are inevitable. For this purpose, first step is exact modeling of water-structure and their interaction conditions. In this paper, the basic equation involved the water-structure-foundation interaction and the effective factors are explained briefly for concrete hydraulic structure types. The finite element modeling of two concrete gravity dams with 5 m, 150 m height, reservoir water and foundation bed rock is idealized and then the effects of fluid domain and bed rock have been investigated on modal characteristic of dams. The analytical results obtained from numerical studies and modal analysis show that the accurate modeling of dam-reservoir-foundation and their interaction considerably affects the modal periods, mode shapes and modal hydrodynamic pressure distribution. The results show that the foundation bed rock modeling increases modal periods about 80%, where reservoir modeling changes modal shapes and increases the period of all modes up to 30%. Reservoir-dam-foundation interaction increases modal period from 30% to 100% for different cases.

선택 취수하는 저수지에서 탁수의 동태 (Dynamics of Turbid Water in a Korean Resernvoir with Selective Withdrawal Discharges)

  • 신재기;정선아;최일환;황순진
    • 생태와환경
    • /
    • 제37권4호통권109호
    • /
    • pp.423-430
    • /
    • 2004
  • 본 연구는 선택 취수하는 저수지에서 장마 전후에 탁수의 거동을 파악하고자 하였다. 강수량은 11월-5월에 적었고, 6월-10월에 풍부하여 대비가 되었다. 수문에 의한 방류는 선행 강수량과 유입량이 각각 50mm, $80\;m^3^s{-1}$이상일 때 조작되었고, 그 외 기간은 대부분 취수탑을 통해 배출되었다. 하류부를 중심으로 비교할 때, 장마 전후 수중 탁도 차이는 평균값이 29.9NTU로서 장마 후에 크게 증가하였다. 탁수에 포함된 입자 크기의 범위는 0.435-$482.9\;{mu}m$이었고, 전 정점에서 clay성분의 미세립자로 갈수록 크기 분포가 더욱 조밀하였을 뿐만 아니라 상대적으로 차지하는 비율도 높았다. 탁수의 입자 분포에서 clay는 94.4-98.9%, silt는 1.1-5.6% 범위로서 총 입자수의 대부분을 차지하였다. 입자 분포에 의한 탁수의 흐름을 분석한 결과, 저수지의 하류부에서 총입자수는 저층에서 표층으로 갈수록 선형적인 증가가 뚜렷하였다. 이것은 저수지의 수리학적 환경과 밀접한 관련성이 있었고, 선택취수탑과 수문을 통한 방류에 의한 영향이 큰 것으로 추정되었다. 하천으로부터 유입된 탁수는 중류부에서 침강되다가 하류부에서 재부유하는 현상이 발생함으로서 표층-중층을 통한 탁수 이동이 현저하였다. 따라서, 향후 저수지 수질관리 측면에서 이에 대한 육수학적 영향을 규명할 필요성을 제시하고자 한다.

수중보를 고려한 하천에서 보존성 오염물질의 이송특성 분석 - 낙동강을 중심으로 (Transportation Modeling of Conservative Pollutant in a River with Weirs - The Nakdong River Case)

  • 이정우;배순임;이동률;서동일
    • 대한환경공학회지
    • /
    • 제36권12호
    • /
    • pp.821-827
    • /
    • 2014
  • 4대강 사업에 따른 수중보의 건설로 인해 낙동강을 포함한 우리 나라의 주요 하천들의 물리적 특성에 많은 변화가 있었으며 따라서 오염물질의 이동 특성 또한 변화하였을 것으로 판단된다. 낙동강에서 칠곡보와 강정보를 대상으로 임의의 오염물질 유출 사고에 대비하여 대책을 수립하는데 참고할 수 있도록 3차원 수리 수질모델, Environmental Fluid Dynamics Code (EFDC)을 활용하여 보존성 오염물질의 이동 확산 특성을 분석하였다. 가상적인 시나리오를 구성하며 구미공단에서 독성물질의 유출이 발생하였다고 가정하였을 때 칠곡보 및 강정보 지점에 오염물질이 도달하는 시간은 각각 약 2.22일과 9.83로서 4대강 사업 전에 비해 약 12배 이상 오염물질의 이동 시간이 지연된 것으로 분석되었다. 또한 대구광역시의 취수장을 구미시상류로 이전하였을 경우에 대한 모의 결과, 구미 상류의 유량의 감소에 따른 수위 및 유속의 감소에 의한 확산 현상의 증가로 인해, 독성물질의 하류 도달시간이 증가하는 것으로 나타났으며, 독성물질의 최대 검출 농도는 약 2% 정도 감소되는 것으로 산정되었다.