• Title/Summary/Keyword: insulin receptor

Search Result 339, Processing Time 0.025 seconds

Anti-Obese Activity of HPJ Extract on High Fat Diet-Induced Obese Mice (고지방 식이로 유도된 비만 쥐에서 HPJ 추출물의 항비만 효과)

  • Yuan, Hai-Dan;Quan, Hai-Yan;Zhang, Ya;Kim, Sung-Jib;Shin, Dae-Hee;Lim, Bang-Ho;Chung, Sung-Hyun
    • YAKHAK HOEJI
    • /
    • v.53 no.5
    • /
    • pp.286-292
    • /
    • 2009
  • In this study, we investigated the anti-obese activity of HPJ extract in C57BL/6J mice. The C57BL/6J mice were randomly divided into five groups: normal control group (Con), high fat diet control group (HFD), treatment groups with HPJ at 125 mg/kg (HPJ125), 250 mg/kg (HPJ250), or 500 mg/kg (HPJ500). To induce an obesity, mice were fed by a high fat diet for 6 weeks, and mice were administered with HPJ extract once a day for 8 weeks. At the end of treatment, we examined the effect of HPJ extract on body weight, plasma lipid, and lipogenic enzymes. HPJ extract was found to lower whole body and epididymal adipose tissue weights and lowered plasma levels of glucose, insulin, triglyceride (TG), total cholesterol (TC), non-esterified fatty acid (NEFA) and leptin, compared to those in HFD group. Histological analyses of the liver and fat tissues of mice treated with HPJ extract revealed significantly decreased number of lipid droplets and decreased size of adipocytes compared to the HFD group. In addition, HPJ extract preserved the morphological integrity of pancreatic islets. To elucidate an action mechanism of HPJ extract, Western blot and RT-PCR were performed using epididymal adipose tissues. HPJ extract up-regulated the levels of phosphorylated adenosine monophosphate-activated protein kinase (AMPK) and its substrate, acetyl-CoA carboxylasse (ACC). HPJ extract also attenuated lipogenic gene expressions of sterol regulatory element-binding protein $1{\alpha}$ (SREBP$1{\alpha}$), fatty acid synthase (FAS), sterol-CoA desaturase 1 (SCD1) and glycerol-3-phosphate acyltransferase (GPAT) in dose-dependent manners. In contrast, expressions of lipolytic genes such as peroxisome proliferator-activated receptor-$\alpha$ (PPAR-${\alpha}$) and CD36, and fatty acid $\beta$-oxidation gene, carnitine palmitoyltransferase-1 (CPT-1) were increased. These results suggest that HPJ extract ameliorates obesity through inhibiting synthesis of lipogenic enzymes as well as stimulating fatty acid oxidation resulting from activation of AMPK, and HPJ extract could be developed as a potential therapeutic agent for obese patients.

Osteogenic Response of Human Osteoblasts Derived from Mandible and Maxilla: A Preliminary Study (상, 하악골 유래 조골세포의 골형성 능: 일차 연구)

  • Yang, Hoon Joo;Song, Yoon Mi;Kim, Ri Youn;Oh, Ji Hye;Cho, Tae Hyung;Kim, In Sook;Hwang, Soon Jung
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.1
    • /
    • pp.31-37
    • /
    • 2013
  • Purpose: Maxilla and mandible have different patterns of cortical and trabecular bone and different bone mineral densities, even though both are components of the jaw bone. However, cellular differences between maxilla- and mandible derived osteoblasts (OBs) have rarely been studied. We hypothesize that maxilla- and mandible-derived OBs show different responses to $17{\beta}$-estradiol (E2), which is one of the critical factors for bone formation. This study compares skeletal site-specific cell responses between maxilla- and mandible-derived human OBs to E2. Methods: Maxilla- and mandible-derived OBs derived from an identical donor were separately isolated from a total of five normal healthy subjects aged 18~44 years old, cultured with a treatment of 100 nM estrogen. The responses between maxilla- and mandible-derived OBs to E2 were evaluated and compared using cell proliferation, alkaline phosphatase (ALP) activity and gene expression of osteoprotegerin (OPG), ALP, insulin-like growth factor-1 (IGF-1), and estrogen receptor ${\alpha}$ ($ER{\alpha}$). Results: E2 did not have any distinct effects on the proliferation of both types of OBs. Mandible-derived OBs exhibited higher ALP activity than maxilla-derived OBs in the non-treated condition, which was common in all tested individuals. ALP activities of both types of OBs showed a minor increasing tendency with the treatment of E2, even though there was no statistical significance in some specimens. The gene expression of OB by E2 was diverse, depending on the individuals. There was increased expression of OPG, IGF-1, or $ER{\alpha}$ gene in the part of subjects, which was more repeated in maxilla-derived OBs. In particular, OPG or ALP induction by E appeared less frequently in mandible-derived OBs. Conclusion: Current results revealed that E2 affects maxilla- and mandible-derived OBs into facilitating the osteogenic process despite individual differences. Mandible-derived OBs are less sensitive to bone-forming gene expression by E2.

Effects of Dietary Fructose and Glucose on Hepatic Steatosis and NLRP3 Inflammasome in a Rodent Model of Obesity and Type 2 Diabetes (비만 및 제2형 당뇨병 쥐 모델에서 과당과 포도당의 섭취가 지방간과 NLRP3 염증조절결합체에 미치는 영향)

  • Lee, Hee Jae;Yang, Soo Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.10
    • /
    • pp.1576-1584
    • /
    • 2013
  • This study is carried out to assess the relative effects of different doses of dietary glucose or fructose on non-alcoholic fatty liver disease (NAFLD) and hepatic metaflammation in a rodent model of type 2 diabetes. KK/HlJ male mice were fed experimental diets as follows: 1) control (CON), 2) moderate glucose (MG, 30% of total calories as glucose), 3) high glucose (HG, 60% of total calories as glucose), 4) moderate fructose (MF, 30% of total calories as fructose), and 5) high fructose (HF, 60% of total calories as fructose) for three weeks. Food intake was not affected by treatments. Compared with HF, HG not only increased serum fasting glucose and area under the curve during oral glucose tolerance test, but also decreased the levels of serum insulin and adiponectin. It indicated that glucose control was complicated via high glucose intake. High fructose treatment led to increased triglyceride in the serum and liver. In comparison to HG, high fructose diet activated NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome consisting of apoptosis-associated speck-like protein containing a CARD (ASC), NLRP3 and caspase 1, which increases interleukin (IL)-$1{\beta}$ maturation and secretion. The activation of NLRP3 inflammasome was accompanied by increased levels of tumor necrosis factor alpha (TNF-${\alpha}$) and IL-6. However, the expression of NLRP3 inflammasome components and pro-inflammatory cytokines did not differ between CON and HG. These data suggested that dietary fructose triggers hepatic metaflammation accompanied by NLRP3 inflammasome activation and has deleterious effects on NAFLD.

Protein tRNA Mimicry in Translation Termination

  • Nakamura, Yoshikazu
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.83-89
    • /
    • 2001
  • Recent advances in the structural and molecular biology uncovered that a set of translation factors resembles a tRNA shape and, in one case, even mimics a tRNA function for deciphering the genetic :ode. Nature must have evolved this 'art' of molecular mimicry between protein and ribonucleic acid using different protein architectures to fulfill the requirement of a ribosome 'machine'. Termination of protein synthesis takes place on the ribosomes as a response to a stop, rather than a sense, codon in the 'decoding' site (A site). Translation termination requires two classes of polypeptide release factors (RFs): a class-I factor, codon-specific RFs (RFI and RF2 in prokaryotes; eRFI in eukaryotes), and a class-IT factor, non-specific RFs (RF3 in prokaryotes; eRF3 in eukaryotes) that bind guanine nucleotides and stimulate class-I RF activity. The underlying mechanism for translation termination represents a long-standing coding problem of considerable interest since it entails protein-RNA recognition instead of the well-understood codon-anticodon pairing during the mRNA-tRNA interaction. Molecular mimicry between protein and nucleic acid is a novel concept in biology, proposed in 1995 from three crystallographic discoveries, one, on protein-RNA mimicry, and the other two, on protein-DNA mimicry. Nyborg, Clark and colleagues have first described this concept when they solved the crystal structure of elongation factor EF- Tu:GTP:aminoacyl-tRNA ternary complex and found its overall structural similarity with another elongation factor EF-G including the resemblance of part of EF-G to the anticodon stem of tRNA (Nissen et al. 1995). Protein mimicry of DNA has been shown in the crystal structure of the uracil-DNA glycosylase-uracil glycosylase inhibitor protein complex (Mol et al. 1995; Savva and Pear 1995) as well as in the NMR structure of transcription factor TBP-TA $F_{II}$ 230 complex (Liu et al. 1998). Consistent with this discovery, functional mimicry of a major autoantigenic epitope of the human insulin receptor by RNA has been suggested (Doudna et al. 1995) but its nature of mimic is. still largely unknown. The milestone of functional mimicry between protein and nucleic acid has been achieved by the discovery of 'peptide anticodon' that deciphers stop codons in mRNA (Ito et al. 2000). It is surprising that it took 4 decades since the discovery of the genetic code to figure out the basic mechanisms behind the deciphering of its 64 codons.

  • PDF

Antioxidant Activity and Inhibitory Effect of Aster scaber Thunb. Extract on Adipocyte Differentiation in 3T3-L1 Cells (참취(Aster scaber Thunb.) 추출물의 항산화 효과와 3T3-L1 지방전구세포에서의 지방분화 억제 효과)

  • Choi, Jun-Hyeok;Park, Yun-Hee;Lee, In-Seon;Lee, Sam-Pin;Yu, Mi-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.356-363
    • /
    • 2013
  • Clinical and preclinical trials of involving drugs with anti-obesity effects have focused on screening for herbal medicines suspected to have anti-obesity activities. In this study, an extract of Aster scaver Thunb., which was prepared in 80% methanol (ASE), was assessed for its total phenol content, total flavonoid content, antioxidant activity ability to scavenge the ${\alpha}-{\alpha}$-diphenyl-${\beta}$-picrylhydrazyl, 2,2'-azino-bis-[3-ethylbenzthiazoline]-6-sulfonic acid radical, and anti-adipogenic effects. The anti-adipogenic effect of ASE on the differentiation of 3T3-L1 pre-adipocytes to adipocytes was investigated by assaying the suppression of adipocyte differentiation and lipid accumulation by using western blot analysis and the Oil Red-O assay, respectively. The staining results showed that ASE significantly inhibited 3T3-L1. Western blot analysis results showed that ASE decreased the levels of peroxisome proliferator-activated receptor-${\gamma}$, CCAAT/enhancer-binding protein ${\alpha}$, and sterol regulatory element-binding protein 1c. These results demonstrate that ASE directly inhibits the differentiation of preadipocytes, and might be an important adjunct in the therapeutic efforts to reduce adipogenesis.

Interaction of $17{\beta}-Estradiol$ with EGF and IGF-I on Proliferation and $P_i$ Uptake in Primary Cultured Rabbit Renal Proximal Tubular Cells

  • Han, Ho-Jae;Lee, Yeun-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.4
    • /
    • pp.493-501
    • /
    • 1998
  • The most significant direct role of estrogen in vivo is its ability to elicit receptor-mediated cellular proliferation in mammalian target tissues. However, the mechanism by which exogenously added estrogen causes the neoplastic transformation of renal cortical cells is yet to be uncovered. The present study was designed to evaluate interaction of $17{\beta}-estradiol\;(E_2)$ with epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I) on proliferation and $P_i$ uptake in primary cultured rabbit renal proximal tubular cells in phenol red-free, hormonally defined-medium. $[^3H]-thymidine$ incorporation increased markedly by about 133% and 141% more in the presence of $10^{-9}\;and\;10^{-6}\;M\;E_2$, respectively, than that of control. Cell count was 162% and 143% greater in the presence of $10^{-9}\;and\;10^{-6}\;M\;E_2$ , respectively, compared with control. Among all time points examined, there was an increase in $[^3H]-thymidine$ incorporation in the presence of $10^{-9}\;M\;E_2$ at day 9 or 13, respectively. However, $E_2$ ($10^{-9}\;M$) significantly drove up cell count to 160% of that of control at day 13, while it had a slight but statistically insignificant effect at day 9. $E_2-induced$ stimulation of $[^3H]-thymidine$ incorporation was completely reversed by $E_2$ antagonists (progesterone or tamoxifen). $E_2$ ($10^{-9}\;M$) or EGF ($10^{-8}\;M$) significantly stimulated $[^3H]-thymidine$ incorporation by 144% and 154% of control. $E_2$ plus EGF was synergistic on $[^3H]-thymidine$ incorporation (204% of control), while $E_2$ plus IGF-I showed a slight but no significant synergistic effect. Cell number also displayed similar pattern. $E_2$ ($10^{-9}\;M$) significantly stimulated $P_i$ uptake to 134% of control. $E_2$-induced stimulation of $P_i$ uptake was partially reversed by $E_2$ antagonists. EGF or IGF-I ($10^{-8}\;M$) significantly also increased $P_i$ uptake to 132% or 129% of control. $E_2$ plus EGF had synergistic effect on $P_i$ uptake, while $E_2$ plus IGF-I did not. In conclusion, $E_2$ may act not only directly interaction with its receptors but also indirectly as a modulator of EGF in proliferation and $P_i$ uptake of primary cultured rabbit renal proximal tubular cells.

  • PDF

The Anti-Obesity Effect of Smilax china Extract (토복령 추출물의 항비만 활성)

  • Park, Jung Ae;Jin, Kyong-Suk;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.4
    • /
    • pp.354-360
    • /
    • 2014
  • In this study, the anti-obesity activity of Smilax china methanol extract (SCME) was evaluated using a pancreatic lipase enzyme inhibition assay, and a cell culture model system. Results indicated that, SCME effectively inhibited pancreatic lipase enzyme activity in a dose-dependent manner. Furthermore, SCME significantly suppressed insulin, dexamethasone, 3-isobutyl-1-methylxanthine-induced adipocyte differentiation, lipid accumulation, and triglyceride contents on 3T3-L1 preadipocytes, in a dose-dependent manner. The anti-adipogenic effect was modulated by cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins (C/EBP) ${\alpha}$, $C/EBP{\beta}$, and the peroxisome proliferator-activated receptor ${\gamma}$ gene and protein expressions. Moreover, SCME triggered lipolysis effects dose-dependently on adipocyte. Taken together, these results provide an important new insight into SCME, indicating that it possesses anti-obesity activity through pancreatic lipase inhibition, anti-adipogenic and lipolysis effects. SCME may therefore be utilized as a promising source in the field of nutraceuticals. The identification of active compounds that confer the anti-obesity activities of SCME may be a logical next step.

Genome-based Gene Expression Analysis of EGCG-mediated Cell Transformation Suppression Effect in Mouse Cell line Balb/c 3T3 A31-1-1 (마우스세포주 Balb/c 3T3 A31-1-1에서 Epigallocatechin gallate(EGCG)의 세포암화 억제효과에 대한 유전자발현 해석)

  • Jung, Ki-Kyung;Suh, Soo-Kyung;Kim, Tae-Gyun;Park, Moon-Suk;Lee, Woo-Sun;Park, Sue-Nie;Kim, Seung-Hee;Jung, Hai-Kwan
    • Environmental Mutagens and Carcinogens
    • /
    • v.26 no.4
    • /
    • pp.125-132
    • /
    • 2006
  • Previous studies showed that epigallocatechin gallate(EGCG) have substantial effects of suppressing the N-methyl-N'-nitro-N-nitrosoguanidine(MNNG)-initiated cell transformation process on the bases of foci formation frequency and loss of anchorage dependency. In this study we tried to clarify the molecular mechanism of suppressing the cell transformation process. Mouse cell line balb/c 3T3 A31-1-1 was exposed 2 days to MNNG followed by 15 days 12-O-tetradecanoylphorbol-13-acetate(TPA) treatment for our transformation process. EGCG was added after the time point of 24 hours exposure to TPA and incubated for 19 days. 2029 genes were selected in our transformation process that showed fold change value of 1.5 or more in the microarray gene expression analysis covering the mouse full genome. These genes were found to be involved mainly in the cell cycle pathway, focal adhesion, adherens junction, TGE-$\beta$ signaling, apoptosis, lysine degradation, insulin signaling, ECM-receptor interaction. Among the genes, we focused on the 631 genes(FC>0.5) reciprocally affected by EGCG treatment. Our study suggest that EGCG down-regulate the gene expressions of up stream signaling factors such as nemo like kinase with MAPK activity and PI3-Kinase, Ras GTPase and down stream factors such as cyclin D1, D2, H, T2, cdk6.

  • PDF

Inhibitory Effect of Rumex Crispus L. Fraction on Adipocyte Differentiation in 3T3-L1 Cells (소리쟁이 분획물의 지방세포 분화 억제 효과)

  • Park, Sung-Jin;Choi, Jun-Hyeok;Jung, Yeon-Seop;Yu, Mi Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.90-96
    • /
    • 2013
  • The anti-obesity effect of ethanol xtract and their fractions from Rumex Crispus L. on the differentiation of 3T3-L1 pre-adipocytes to adipocytes was investigated by suppressing adipocyte differentiation and lipid accumulation with Oil red O assay, western blot and real-time PCR analysis. Ethyl acetate fraction of Rumex crispus L. significantly inhibited adipocyte differentiation when treated during the adipocyte differentiation process, as assessed by measuring fat accumulation using Oil red O staining. In inducing differentiation of 3T3-L1 preadipocytes in the presence of an adipogenic cocktail, isobutylmethylxanthine (IBMX), dexamethasone- and insulin-along with ethyl acetate fraction residue processing treatment significantly decreased protein expression of obesity-related proteins, such as peroxisome-proliferators-activated-receptor-${\gamma}$ ($PPAR{\gamma}$) and CCAAT enhancer-binding-proteins ${\alpha}$ ($C/EBP{\alpha}$). These results indicate that ethyl acetate fraction of Rumex crispus L. is the most effective candidate for preventing obesity. However further studies will be needed to identify the active compounds that confer the anti-obesity activity of ethyl acetate fraction from Rumex crispus L.

Differential effects of type 1 diabetes mellitus and subsequent osteoblastic β-catenin activation on trabecular and cortical bone in a mouse mode

  • Chen, Sixu;Liu, Daocheng;He, Sihao;Yang, Lei;Bao, Quanwei;Qin, Hao;Liu, Huayu;Zhao, Yufeng;Zong, Zhaowen
    • Experimental and Molecular Medicine
    • /
    • v.50 no.12
    • /
    • pp.3.1-3.14
    • /
    • 2018
  • Type 1 diabetes mellitus (T1DM) is a pathological condition associated with osteopenia. $WNT/{\beta}$-catenin signaling is implicated in this process. Trabecular and cortical bone respond differently to $WNT/{\beta}$-catenin signaling in healthy mice. We investigated whether this signaling has different effects on trabecular and cortical bone in T1DM. We first established a streptozotocin-induced T1DM mouse model and then constitutively activated ${\beta}$-catenin in osteoblasts in the setting of T1DM (T1-CA). The extent of bone loss was greater in trabecular bone than that in cortical bone in T1DM mice, and this difference was consistent with the reduction in the expression of ${\beta}$-catenin signaling in the two bone compartments. Further experiments demonstrated that in T1DM mice, trabecular bone showed lower levels of insulin-like growth factor-1 receptor (IGF-1R) than the levels in cortical bone, leading to lower $WNT/{\beta}$-catenin signaling activity through the inhibition of the IGF-1R/Akt/glycogen synthase kinase $3{\beta}$ ($GSK3{\beta}$) pathway. After ${\beta}$-catenin was activated in T1-CA mice, the bone mass and bone strength increased to substantially greater extents in trabecular bone than those in cortical bone. In addition, the cortical bone of the T1-CA mice displayed an unexpected increase in bone porosity, with increased bone resorption. The downregulated expression of WNT16 might be responsible for these cortical bone changes. In conclusion, we found that although the activation of $WNT/{\beta}$-catenin signaling increased the trabecular bone mass and bone strength in T1DM mice, it also increased the cortical bone porosity, impairing the bone strength. These findings should be considered in the future treatment of T1DM-related osteopenia.