• Title/Summary/Keyword: insulation resistance

Search Result 515, Processing Time 0.028 seconds

Analysis of Insulation Characteristics for High-voltage Motor Stator Winding using Insulation Diagnostic Test (절연진단법을 이용한 고전압전동기 고정자권선의 절연특성분석)

  • Oh, Bong-Keun;Kang, Hyun-Goo;Kim, Hyun-Il;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.404-405
    • /
    • 2009
  • Insulation diagnostic tests for high voltage motor stator winding were conducted to analyze the insulation characteristics. Test motors were manufactured same factory and year(1996). Insulation characteristics of moisture winding are different from those of deteriorative winding. Insulation resistance and disscipation factor test results are sensitive to moisture winding. AC current, disscipation factor tip-up and PD test results are sensitive to deteriorative winding. Also, Capacitance value for stator winding insulation material has characteristic of increasing in moisture winding.

  • PDF

Anormal Dielectric and Insulation Properties of Semiconductor/XLPE (반도전층/XLPE 의 불규칙한 유전 및 절연 특성)

  • Lee, Jong-Chan;Kim, Kwang-Soo;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.53-57
    • /
    • 2002
  • Reduction of insulation thickness would be beneficial not only for increasing the cable length but would also improve its thermal performance. An interfacial diffusion method was devised to reduce insulation thickness by improving the interfacial properties of XLPE cable insulation. In this paper, to evaluate superficially the interface properties between XLPE insulation and semiconducting layer, the dielectric and insulation properties of tan${\delta}$ and volume resistance were measured with temperature dependence. Above the results, dielectirc and insulation properties with semiconductor/XLPE were more anormal than its bulk caused by the interfacial properties.

  • PDF

Behaviors of turn-to-turn contact resistance (Rc) of various REBCO CC tapes according to applied contact pressure

  • Jeong, Chanhun;Shin, Hyung-Seop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.3
    • /
    • pp.15-20
    • /
    • 2018
  • No-insulation (NI) pancake magnets are fabricated using Rare earth-Barium-Copper Oxide (REBCO) coated conductor (CC) tapes, which enabled a very compact magnet in the aspects of high critical current density ($J_c$) and high mechanical strength by removing insulation and allowing thinner stabilizer. They have also advantages such as self-quench protection. Therefore, it does not need quench detection and protection that can be very challenging in a high critical temperature ($T_c$) superconducting magnet technology. Recently, it was reported that the NI REBCO CC magnets have some drawbacks of long charging time and high field ramp loss which will be a concern in the operation of cryocooled magnets. These issues are related to the turn-to-turn contact resistivity and can be released by managing it. This is also closely related to the activity of reducing the contact joint resistance in the case of CC joints for long length CC fabrication. Therefore, in this study, the turn-to-turn contact resistance ($R_c$) at the CC contact part of differently stabilized CC tapes was measured. The behaviors of $R_c$ at CC contact parts according to the applied contact pressure were investigated. The range of $R_c$ measured for CC tapes adopted will provide fundamental data for design and fabrication of the CC NI coils.

The Study on Characteristics for Thermal Aging of the Layer Insulation in Transformers (변압기 층간 절연지의 열열화 특성 평가에 관한 연구)

  • 이병성;송일근;김동명;박동배;한상옥
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.406-409
    • /
    • 2002
  • The primary insulation system used in an oil-filled transformer is Kraft paper, wood, porcelain and, of course, oil. Modern transformers use paper that is chemically treated to improve its tensile strength properties and resistance to aging caused by immersion in oil. These insulation papers are mainly aged to thermal stress. Over the course of the insulation paper and oil's life it is exposed to high temperatures, oxygen and water. Its interaction with the steel of the tank and core plus the copper and aluminium of the windings will eventually cause the chemical properties of the oil to decay. High temperature have an effect on mechanical strength of cellulous paper using the layer insulation. We made two aging cell in which thermal aging tests of insulation papers and mineral oil are conducted. It is measured dielectric strength, number of acid, moisture, etc. of insulation paper and oil aged in the aging cells.

  • PDF

Analysis of Insulation Condition in High Voltage Motor Stator Windings Following Cleaning and Insulation Reinforcement (세척과 절연보강에 따른 고압전동기 고정자 권선의 절연상태 분석)

  • Kim, Hee-Dong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.6
    • /
    • pp.474-480
    • /
    • 2012
  • Diagnostic tests were performed on two high voltage(HV) motor stator windings. These tests included the measurement of insulation resistance, polarization index, AC current, dissipation factor($tan{\delta}$) and partial discharge(PD) magnitude. Surface contamination of HV motor stator windings has an effect on the AC current and $tan{\delta}$. When the stator windings were finished cleaning and insulation reinforcement, the increase rate of AC current(${\Delta}I$) and dissipation factor(${\Delta}tan{\delta}$) were very small compared to those before cleaning. However, the PD magnitude remained the same. These tests show that cleaning and insulation reinforcement of HV motor stator windings can reduce the insulation failure.

Thermal Resistance and Condensation in the Light-frame Timber Wall Structures with Various Composition of Insulation Layers

  • Jang, Sang Sik;Lee, Hyoung Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.533-542
    • /
    • 2019
  • As energy costs increase, more people has become interested on energy efficiency and savings in residential buildings. The two main subjects related to energy in residential buildings are insulation and condensation. There are two approaches to prevent condensation; increasing air tightness and maintaining the temperature inside of the wall structure over the dew point, which is in turn related to insulation. Even though the Korean government has highlighted the importance of energy efficiency for residential housings, and in spite of the customers' demands, the timber construction industry is still using conventional light-frame construction without even trying to improve energy efficiency. In this study, various types and combinations of wall structures were tested under cold outdoor and warm indoor temperatures to analyse the temperature gradients and to determine the possible sites of condensation in the wall structures. In addition to the experimental tests, three theoretical models were developed and their estimations of temperature change through the wall structure were compared with the actual measurements to evaluate accuracy of the models. The results of the three models agree relatively well with the experimental values, indicating that they can be used to estimate temperature changes in wall structures. The theoretical analysis of different insulation layers' combinations show that condensation may occur within the mid-layer in the conventional light-frame wall structures for any combination of inner-, mid-, and outer-layers of insulation. Therefore, it can be concluded that the addition of an inner and outer insulation layer or increasing the thickness of insulation may not be adequate to prevent condensation in the wall structure without preventing penetration of warm moist air into the wall structure.

Network Modeling on Track Circuit and Analysis of Resistance Characteristic on Wood Sleeper (궤도회로의 단자망 모델링 및 목침목 저항 특성 해석)

  • Yoon, In-Mo;Kim, Min-Seok;Ko, Young-Hwan;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.6
    • /
    • pp.565-569
    • /
    • 2010
  • Sleepers perform bearing rails and are underneath rails. Therefore, the current and voltage of rails are related to the resistance of sleepers. In case that the resistance of sleepers are low, operation problems of relays in tr ack circuits are occur because of flowing leakage current through sleepers. So the condition that the track circuit is always occupied by a train is kept. Currently, the creosote has been used in wood sleepers due to prevention against putrefaction. After a long time, the material is changeable to the chemistry material bases on carbon dioxide or carbon. So, the insulation resistance of wood sleepers is lower than the initial insulation resistance. In case of effecting wood sleepers as conductors, amplitude of the current and voltage on rails is decreased. This phenomenon causes that a train does not receive signals. In this paper, four-network model on the track circuit including the insulation resistance of sleepers is suggested. Also, the standard value of the resistance in straight section is proposed in the wood sleeper.

The variations of tracking resistance of outdoor Epoxy composites due to complex degradation (복합열화로 인한 옥외용 에폭시수지의 내트래킹성 변화)

  • Kim, T.Y.;Kim, K.M.;Lee, D.J.;Son, I.H.;Ka, C.H.;Kim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1614-1616
    • /
    • 1999
  • Epoxy resin has been used as matrix resin of advanced composites owing to ideally suitable properties and inherent physical and chemical properties for electrical and electronic insulation. In this paper, in order to evaluate the performance of epoxy composites for out door insulation, variations of tracking resistance were investigated on the complex ageing parameter. Also, IPN methods were introduced in order to improve performance for out door use. As a result, it was confirmed that tracking resistance were degraded with complex ageing parameters. But, it was confirmed that specimen of IPN structure have the better tracking resistance properties than SIN structure by moisture absorption aging.

  • PDF

Study on Crack Resistance Improvement of Epoxy Insulation (Epoxy 절연물의 내크랙성 향상에 관한 연구)

  • Ha, Young-Kil;Kim, Su-Yon;Lee, Sang-Jin;Kim, Young-Seong;Park, Wan-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1581-1583
    • /
    • 1999
  • Epoxy Compound has been used as insulation material in cable accessories. During the applying voltage to cable, heat shock is induced to accessory by the temperature difference between atmosphere and conductor. In this study, crack resistance, thermal and mechanical properties were evaluated about conventional epoxy compound and rubber toughened epoxy compound. Because rubber absorbs the stress caused by heat shock, crack resistance of rubber toughened epoxy compound is high. In the case of low thermal expansion coefficient, the compound shows high crack resistance because of low volumetric change.

  • PDF

The Analysis of Heat Transfer through the Multi-layered Wall of the Insulating Package

  • Choi, Seung-Jin
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.12 no.1
    • /
    • pp.45-53
    • /
    • 2006
  • Thermal insulation is used in a variety of applications to protect temperature sensitive products from thermal damage. Several factors affect the performance of insulation packages. Among these factors, the thermal resistance of the insulating wall is the most important factor to determine the performance of the insulating package. In many cases, insulating wall consists of multi-layered structure and the heat transfer through this structure is a very complex process. In this study, an one-dimensional mathematical model, which includes all of the heat transfer principles covering conduction, convection and radiation in multi-layered structure, were developed. Based on this model, several heat transfer phenomena occurred in the air space between the layer of the insulating wall were investigated. From the simulation results, it was observed that the heat transfer through the air space between the layer were dominated by conduction and radiation and the low emissivity of the surface of each solid layer of the wall can dramatically increase the thermal resistance of the wall. For practical use, an equation was derived for the calculation of the thermal resistance of a multi-layered wall.

  • PDF