• Title/Summary/Keyword: insulation materials

Search Result 1,007, Processing Time 0.03 seconds

Experimental Research for Air-borne Noise Reduction of a Multi-layered Insulation (다층 인슐레이션의 차음성능에 대한 실험적 연구)

  • 고강호;김영호;국형석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1185-1191
    • /
    • 2001
  • This paper discusses an experimental method for measuring the insertion loss (IL) performance of multi-layered insulations that are used in vehicles. Instead of two adjacent reverberation chambers which are generally used to measure the transmission loss (TL) of the large sound isolation materials, air-borne sound insulation tester was utilized to determine the IL and articulation index (AI) of standardized insulation materials. In comparison to reverberation chamber method, air-borne sound insulation tester method is more space-saving, more time-saving and more simple to the automotive acoustics. From the empirical results, it is found that the performances of insulation materials are closely connected with density of polyurethane foam, thickness of heavy layer, thickness of polyurethane foam, and application ratio to panel area.

  • PDF

A Life Prediction of Insulation Degradation Using Regression Analysis (회귀분석을 이용한 절연열화의 수명예측)

  • 김성홍;김재환;박재준;김순기;심종탁;최재관;이영상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.302-305
    • /
    • 1997
  • Treeing due to partial discharge(PD) is one of the main causes of breakdown of the insulating materials and reduction of tile insulation life. Therefore the necessity for establishing a method to diagnose the aging of insulation materials and to predict the breakdown of insulation has become important. From this viewpoint, our studies diagnose insulation degradation using the method of computer sensing system, which has the advantages of PD and acoustic emission(AE) sensing system. To use advantages of these two methods can be used effectively to search for treeing location and PD in some materials. In analysis method of degradation. using statically operator such as the center of gravity (G). the gradient of the discharge distribution(C), we have analyzed far tole prediction of life which we can be obtained the time, occurred of many pulse of small discharge amplitude.

  • PDF

Technology and Application of Hybrid Insulation Film for Electric Magnet Wire (하이브리드 절연필름의 전동기권선 적용 특성 연구)

  • Han, Se-Won;Han, Dong-Hee;Kang, Dong-Phil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.210-211
    • /
    • 2006
  • This study presents the technology and application of hybrid insulation film for electric magnet wire. In order to make the high efficient motor with high space factor, it is necessary to develop a self-lubrication heat-resistant insulation film that can be used when the space factor 70% or more. A key to achieving high windability is to increase the lubricity and bonding strength of vanish, which for a magnet wire generally determines the mechanical scratches characteristics. Effective ways to reduce scratches include improving insulation film prepared by organic and inorganic hybrid synthesis methods.

  • PDF

Study on Long-term Performance of Phenolic Foam Insulation through Accelerated Aging Test (가속화 시험을 통한 페놀폼 단열재의 장기성능 비교분석에 관한 연구)

  • Kim, Jin-Hee;Kim, Sang-Myung;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.2
    • /
    • pp.11-23
    • /
    • 2020
  • The application of the high-performance insulation materials for buildings seems to be an essential measure for reducing energy use in buildings. Phenolic foam is a readily available insulation material with thermal conductivity of about 0.018 to 0.020 W/(mK). It has the advantage of higher thermal resistance and better fire resistance compared to other conventional building insulation materials. Insulation material used for building envelope is regarded as one of the decisive factors for building's energy load. Furthermore, the degradation of its thermal performance over time increasingly affects the building's energy use demand. Generally, the life span of conventionally built buildings is expected to be more than 50 years, so the long-term performance of insulation materials is critical. This paper aims to evaluate the long-term performance of phenolic form boards through an accelerated aging test. The tests were conducted according to BS EN 13166 and KS M ISO 11561. Based on the results of the accelerated aging test, the thermal performance variation of the material was analyzed, and then its aged value after 25 years was computed. Also, the characteristics of the phenolic foam board's long-term performance were also examined based on the standard testing methods adopted.

Analysis of Hygrothermal Performance of Wood Frame Walls according to Position of Insulation and Climate Conditions

  • Kang, Yujin;Chang, Seong Jin;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.264-273
    • /
    • 2016
  • The insulation of a building envelope influences the hygrothermal performance as well as the thermal performance of the building. While most of Korean wood frame houses have an interior insulation system, the exterior insulation system with high thermal performance has recently been applied. While it can be effective in energy savings for better insulation performance, without consideration of the moisture, condensation and mould growth can occur. Therefore, in this study, hygrothermal behaviour, water content, and mould growth were analyzed using hygrothermal simulation of an exterior wall of a wood frame house with which the interior insulation and exterior insulation systems were applied. The wall layer included Wall A (Interior insulation) and Wall B (Exterior insulation). The U-values were identified as 0.173 and $0.157W/m^2K$, respectively. The total water content and OSB absolute water content of Wall A were confirmed to be higher than those of Wall B, but the absolute water content did not exceed the reference value of 20%. The moisture content of the two walls was determined to be stable in the selected areas. However, mould growth risk analysis confirmed that both Wall A and Wall B were at risk of mould growth. It was confirmed that as the indoor setting temperature decreased, the mould index and growth rate in the same area increased. Therefore, the mould growth risk was affected more by indoor and outdoor climate conditions than by the position of the insulation. Consequently, the thermal performance of Wall B was superior to that of Wall A but the hygrothermal performances were confirmed to be similar.

Physical Properties of Calcium Silicate Inorganic Insulation Depending on Curing Time (칼슘실리케이트 무기 단열소재의 양생기간에 따른 물리 특성)

  • Park, Jae-Wan;Chu, Yong-Sik;Jeong, Jae-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.529-534
    • /
    • 2016
  • Calcium silicate inorganic insulating material is a porous material which is made of 90 wt% of cement. Unlike existing inorganic insulation materials, it is produced without high temperature curing process and also it costs much less than existing inorganic insulation materials. It is an innovative insulation material that supplemented disadvantages of conventional inorganic insulation material. Researches and developments about inorganic insulation materials have been actively researched abroad. Calcium silicate insulation has $0.13g/cm^3$ of specific gravity. Its heat conductivity is under 0.050W/mK, which it similar to conventional inorganic insulation. However, it has weak compressive strength compared to other inorganic insulation. The point of this research is to manifest that calcium silicate inorganic insulating material can have certain compressive strength after curing process with high insulating performance and to find out the proper curing methods and period.

Establishment of Design Standard and Analysis of Insulation Property for Underground Space in Architecture (건축물의 지하공간을 위한 단열재의 특성 분석 및 설계 기준 수립)

  • Hwang, Min-Kyu;Cho, Woo-Jin;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • v.13 no.2
    • /
    • pp.107-112
    • /
    • 2013
  • The purpose of this study is to analyze an insulation property and to establish a design standard for the underground space in architecture. Insulation materials for this study are 12 kinds of Insulation which qualified KS standards(3 classes of EPS type 1, 3 classes of EPS type 2(Neopor), 3 classes of XPS and 3 classes of PU Boards). For insulation materials of underground space, insulating and water tightening property are desired. So conductivity for insulating and water absorption for water tightening are measured in this study. Temperature, insulation is exposed to in the underground space, is different from temperature above the ground. Conductivity is measured in a temperature of $17^{\circ}C$, $20^{\circ}C$, $23^{\circ}C$ and $26^{\circ}C$. In KS standards, water absorption are measure after 24 hours, but insulation is exposed to water for a long time in the underground. So after 110 days, water absorption are measured. As time goes by, increasing of water absorption means decreasing of water tightening and insulating. So after water absorption had measured for 110 days, conductivity has measured again. As a result, XPS is selected as optimized insulation for underground. And Conductivity of XPS insulation with water should be added by 20%.

Fire Risk by Type of Building Exterior Material through Fire Cases (화재사례를 통한 건축물 외장재 종류별 화재발생위험성)

  • Lee, Jeong-Il;Kweon, Young-Hee
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.2
    • /
    • pp.155-161
    • /
    • 2022
  • Recently, the number of cases of fire spreading due to exterior materials of buildings is increasing. Due to the nature of modern architecture, which emphasizes the aesthetics of buildings, because buildings pursue a splendid appearance, they are inexpensive and have relatively good insulation performance, but an increasing number of buildings are adopting insulation materials that have poor fire safety performance. The risk of spread is also greatly increased. Since the exterior wall of a building is made of a variety of materials and structures, it is composed of a combination of several elements, including materials such as insulation and finishing materials. Therefore, it was determined that it was necessary to introduce a more systematic evaluation method for building exterior materials, and to improve the system reflecting this, away from the existing evaluation method that only checked the fire safety performance of finishing materials.

Fabrication of Light-weight Ceramic Insulation Materials by Using Oxide Ceramic Fibers for Reusable Thermal Protection Systems (산화물 세라믹섬유를 이용한 재사용 열보호시스템용 경량 세라믹 단열소재의 제조)

  • Seongwon, Kim;Min-Soo, Nam;Yoon-Suk, Oh;Sahn, Nahm;Jaesung, Shin;Hyeonjun, Kim;Bum-Seok, Oh
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.477-484
    • /
    • 2022
  • Thermal protection systems (TPS) are a group of materials that are indispensable for protecting spacecraft from the aerodynamic heating occurring during entry into an atmosphere. Among candidate materials for TPS, ceramic insulation materials are usually considered for reusable TPS. In this study, ceramic insulation materials, such as alumina enhanced thermal barrier (AETB), are fabricated via typical ceramic processing from ceramic fiber and additives. Mixtures of silica and alumina fibers are used as raw materials, with the addition of B4C to bind fibers together. Reaction-cured glass is also added on top of AETB to induce water-proof functionality or high emissivity. Some issues, such as the elimination of clumps in the AETB, and processing difficulties in the production of reusable surface insulation are reported as well.

A Study on the Insulation Breakdown of Mica-Epoxy Composites (Mica-Epoxy 복합재료의 절연파괴에 관한 연구)

  • Kim, Hui-Gon;Kim, Hui-Su
    • Korean Journal of Materials Research
    • /
    • v.7 no.8
    • /
    • pp.650-653
    • /
    • 1997
  • In large generators in power plants, stator winding insulations is exposed to a combination of thermal, electrical, mechanical, environmental stresses in service. These combined stresses cause insulation aging which leads to final insulation breakdown. In order to identify the breakdown mechanism, the stator winding insulation materials which are composed of mica-epoxy is analyzed by the component of materials with EDS, SEM techniques. We concluded that the potassium ions of mica are replaced by hydrogen ions at boundary area of mica-epoxy and/or mica-mica. It is proposed that through these phenomena, the conductive layers of potassium ions enable high voltage fields of multiple stresses to create voids and microcracks.

  • PDF