• Title/Summary/Keyword: insulating breakdown

Search Result 266, Processing Time 0.021 seconds

Electrical Characteristics of Si-O Superlattice Diode (Si-O 초격자 다이오드의 전기적 특성)

  • Park, Sung-Woo;Seo, Yong-Jin;Jeong, So-Young;Park, Chang-Jun;Kim, Ki-Wook;Kim, Sang-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.175-177
    • /
    • 2002
  • Electrical characteristics of the Si-O superlattice diode as a function of annealing conditions have been studied. The nanocrystalline silicon/adsorbed oxygen superlattice formed by molecular beam epitaxy (MBE) system. Consequently, the experimental results of superlattice diode with multilayer Si-O structure showed the stable and good insulating behavior with high breakdown voltage. This is very useful promise for Si-based optoelectronic and quantum device as well as for the replacement of silicon-on-insulator (SOI) in ultra high speed and lower power CMOS devices in the future, and it can be readily integrated with silicon ULSI processing.

  • PDF

Temperature Dependence on the Partial Discharge of Epoxy Molding Ignition Coil According to Applied Voltage (에폭시 성형 점화코일의 인가전압에 따른 부분 방전 온도 의존성)

  • Shin, Jong-Yeol;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.2
    • /
    • pp.85-91
    • /
    • 2015
  • A gasoline engine automobile uses high voltage generation of the ignition coil, igniting and burning mixed fuel in the combustion chamber, which drives the engine. When the electronic control unit intermits a current supplied to the power transistor, counter electromotive force with a low voltage is generated by self induction action in the ignition primary coil and a high voltage is induced by mutual induction action with the primary ignition coil in the second ignition coil. The high voltage is supplied to the ignition plug in the combustion chamber, causing a spark, igniting the compressed mixed fuel. If a very small defect occurs inside the insulating material when a voltage is applied in said ignition coil, the performance of the insulation material will get worse and breakdown by a partial discharge of corona discharge. Thus, in this experiment, we are to contribute to improve the performance and ensure the reliability of the ignition coil by investigating partial discharge characteristics according to the change of voltage and temperature when a voltage is applied to the specimen of the epoxy molding ignition coil.

The Effect of Conducting Particles on Breakdown Phenomena in GIS (GIS내에서 금속이물이 절연파괴에 미치는 영향)

  • Kim, Min-Kyu;Moon, In-Wook;Kim, Youn-Taeg;Kim, Ik-Soo;Lee, Hyeong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1574-1576
    • /
    • 1994
  • $SF_6$ gas has become an important insulation medium in modern electric power apparatus, because of its high insulation withstand levels and good arc quenching capability. For the application of $SF_6$ gas in GIS the estimation of insulation properties is a fundamental point. Moreover the reduction of withstand levels in case of inhomogeneous fields caused by particles or fixed protrusions is of special interest. It is known that the presence of free conducting particles in GIS can significantly lower the insulating level of $SF_6$ gas at elevated pressure and also it has been recently shown that dielectric strength is greatly reduced by fast transients such as disconnector surges where metallic particles are involved. In this paper, we have disigned the particle test chamber rated 362kV for the purpose of investigating the discharge characteristics in SF6 gas where inhomogenius fields are caused by metallic particles.

  • PDF

The interfacial properties of th eanneled SiO$_{2}$/TiW structure (열처리된 SiO$_{2}$/TiW 구조의 계면 특성)

  • 이재성;박형호;이정희;이용현
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.3
    • /
    • pp.117-125
    • /
    • 1996
  • The variation of the interfacial and the electrical properties of SiO$_{2}$TiW layers as a function of anneal temperature was extensively investigated. During the deposition of SiO$_{2}$ on TiW chemical bonds such as SiO$_{2}$, TiW, WO$_{3}$, WO$_{2}$ TiO$_{2}$ Ti$_{2}$O$_{5}$ has been created at the SiO$_{2}$/TiW interface. At the anneal temperature of 300$^{\circ}C$, WO$_{3}$ and TiO$_{2}$ bonds started to break due to the reduction phenomena of W and Ti and simultaneously the metallic W and Ti bonds started to create. Above 500$^{\circ}C$, a part of Si-O bonds was broken and consequently Ti/W silicide was formed. Form the current-voltage characteristics of Al/Sico$_{2}$(220$\AA$)/TiW antifuse structure, it was found that the breakdown voltage of antifuse device wzas decreased with increasing annealing temperature for SiO$_{2}$(220$\AA$)/TiW layer. When r, the insulating property of antifuse device of the deterioration of intermetallic SiO$_{2}$ film, caused by the influw of Ti and W.W.

  • PDF

Investigation of Simulation and Measuring Algorithm of Partial Discharge for Diagnosis of Electric Machinery Deterioration (전력기기 열화 진단을 위한 부분방전 모의 및 측정 알고리즘 개발연구)

  • Jang, Hyeong-Taek;Kwack, Sun-Geun;Shin, Pan-Seok;Kim, Chang-Eob;Chung, Gyo-Bum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.30-38
    • /
    • 2011
  • This paper proposes a new intelligent diagnosis equipment for the partial discharge, which keeps deteriorating the insulating materials inside electric machineries, ultimately leading to electrical breakdown. In order to simulate experimentally the partial discharge inside the electric machinery, the tip-to-plate, the sphere-to-plate, the sphere-to-sphere and the plate-to-plate electrodes are used respectively, of which the gaps are 1[mm], 3[mm] or 5[mm] and the applied voltages are 3[kV], 5[kV] or 7[kV]. Ceramic coupler sensor and FIR digital filter are used to measure the partial discharge and the artificial neural network is used for the deterioration diagnosis of the electric machinery. The microprocessor of PD diagnosis equipment is DSP (TMS320C6713) with FPGA (Cyclone II). The results of the real-time and on-line experiments performed with the developed equipment are also explained.

Study on the application of antenna method for the criterion test of insulator arc resistance (절연체의 내아크성 평가를 위한 안테나 기법의 적용에 관한 연구)

  • Lee, K.W.;Kim, M.Y.;Kang, S.H.;Lim, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.57-60
    • /
    • 2004
  • Electrical arc is the final stage of insulation breakdown and has high current density which cause heat and light in insulator. Insulator under electrical arc lost its insulating strength and eternal damages. Conventional criterion of electrical arc resistance in Standards have depended on the change of sound pressure and light color after damages on insulator by electrical arc. The recognition of these changes is done by human himself which was very subjective and resulted in some error to judge whether insulator has damages or not. This paper has shown that antenna method is the appropriate measure to judge electrical arc resistance for insulator. Antenna measures the electromagnetic waves radiated from tungsten electrodes with 6mm gap regulated by KSC2130. Applied voltage cross two tungsten electrodes have two different methods such as 1/8 10 and continuous 10mA. Signal amplitudes obtained by antenna has diminished after the damage of insulator, which will provide objective and good way to judge the electrical arc resistance.

  • PDF

A Study on Insulating Design and Test of Mini-Model windings for a 22.9 kV Class HTS Transformer Reducing AC Loss (저손실 22.9 kV급 고온초전도 변압기를 위한 미니 모델 권선의 절연 설계 및 시험 연구)

  • Baek, Seung-Myeong;Cheon, Hyeon-Gweon;Nguyen, Van Dung;Kwag, Dong-Sun;Lee, Chang-Hwa;Kim, Hea-Jong;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.94-99
    • /
    • 2004
  • This paper presents experimental data from model windings with different arrangement of coil in order to provide information to design a 22.9 kV class HTS transformer. Before experiment, the composite insulation of two different type of HTS transformers are investigated. The first basic of investigation is a breakdown characteristic of liquid nitrogen and flashover characteristic on the GFRP surface under ac and impulse, The second investigation is insulation design, manufacture and test of model windings. These include a AC withstand voltage test of 50 kV rms and a lighting impulse test of 150 kV at peak.

  • PDF

Insulating Properties between Cryocooler and Magnet for the Conduction-Cooled HTS SMES System (전도냉각형 고온초전도 SMES의 냉동기와 마그네트 간의 절연 특성)

  • Choi Jae-Hyeong;Kwag Dong-Soon;Cheon Hyeon-Gweon;Kim Hae-Jong;Seong Ki-Chul;Kim Sang-Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.3
    • /
    • pp.45-48
    • /
    • 2006
  • The conduction-cooled HTS SMES is operated in cryogenic and high vacuum condition. Thus. Insulation design at cryogenic temperature and high vacuum is a key and an important element that should be established to accomplish compact design is a big advantage of HTS SMES. However, the behaviors of insulators for cryogenic conditions in vacuum are virtually unknown. Therefore, active research and development of insulation concerning application of the conduction cooled HTS SMES was needed. In this study, the insulation characteristics at experimented high vacuum and cryogenic similar to running condition of SMES system. Also, investigated about insulation characteristics of suitable some materials to insulator for conduction-cooled HTS SMES. As these results. the basis data was obtained for insulation materials selection and insulation design for development of 600kJ class conduction-cooled HTS SMES.

Cryogenic Insulation Technique for HTS Transformer (고온초전도 변압기용 극저온 절연기술)

  • Kim, Sang-Hyun;Cheon, Hyeon-Gweon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.45-48
    • /
    • 2006
  • In the response to the demand for electrical energy , much effort was given to develop and commercialize high temperature superconducting (HTS) power equipments has been made around the world. Especially, HTS transformer is one of the most promising devices . but the cryogenic insulation technology should be established during development Hence many types of dielectric tests should be carried out to understand the dielectric phenomena at cryogenic temperature and to gather various dielectric data. Among the many types dielectric tests . the characteristic of barrier effect were conducted using simulated electrode after analysing the insulating configuration of HTS transformer main winding. The influence of a barrier on the dielectric strength was measured according to the position of the harriet the number of the barrier and thickness or the barrier. It was shown that the effectiveness . namely the ratio of the breakdown voltage in presence of barrier to the voltage without barrier, is highest when the barrier is placed at the needle electrode side. On the contrary, in the case of having the barrier between the electrodes, the harrier was placed between the electrodes the characteristic was even improved slightly.

Electrical Insulation Design of a 154 kV Class HTS Cable and Termination (154 kV급 고온초전도 케이블 및 단말의 전기절연 설계)

  • Kwag, Dong-Soon;Cheon, Hyeon-Gweon;Choi, Jae-Hyeong;Kim, Hae-Jong;Cho, Jeon-Wook;Kim, Sang -Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.61-66
    • /
    • 2007
  • A transmission class high-temperature superconducting(HTS) power cable system is being developed in Korea. For insulation design of this cable the grading method of insulating paper is proposed. Two kinds of laminated polypropylene paper that has different thickness has been used as the electrical insulation material. The use of graded insulation gives improved mechanical bending properties of the cable. In a HTS cable technology the terminations are important components. A HTS cable termination is energized with the line-to-ground voltage between the coaxial center and outer surrounding conductors. in the axial direction. There is also a temperature difference from ambient to about 77 K. For insulation design of this termination, glass fiber reinforced plastic(GFRP) was used as the insulation material of the termination body, and the capacitance-graded method is proposed. This paper will report on the experimental investigations on impulse breakdown and surface flashover characteristics of the insulation materials for insulation design of a transmission class HTS power cable and termination. Based on these experimental data, the electrical insulation design of a transmission class HTS power cable and termination was carried out.