• 제목/요약/키워드: insulating breakdown

검색결과 266건 처리시간 0.027초

Copper Particle Effect on the Breakdown Strength of Insulating Oil at Combined AC and DC Voltage

  • Wang, You-Yuan;Li, Yuan-Long;Wei, Chao;Zhang, Jing;Li, Xi
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.865-873
    • /
    • 2017
  • Converter transformer is the key equipment of high voltage direct current transmission system. The solid suspending particles originating from the process of installation and operation of converter transformer have significant influence on the insulation performance of transformer oil, especially in presence of DC component in applied voltage. Under high electric field, the particles easily lead to partial discharge and breakdown of insulating oil. This paper investigated copper particle effect on the breakdown voltage of transformer oil at combined AC and DC voltage. A simulation model with single copper particle was established to interpret the particle effect on the breakdown strength of insulating oil. The experimental and simulation results showed that the particles distort the electric field. The breakdown voltage of insulating oil contaminated with copper particle decreases with the increase of particle number, and the breakdown voltage and the logarithm of particle number approximately satisfy the linear relationship. With the increase of the DC component in applied voltage, the breakdown voltage of contaminated insulating oil decreases. The simulation results show that the particle collides with the electrode more frequently with more DC component contained in the applied voltage, which will trigger more discharge and decrease the breakdown voltage of insulating oil.

식물성절연유의 유동속도와 온도에 따른 절연파괴전압 (Dielectric Breakdown Voltage According to Flow Velocity and Temperature of Vegetable Oils)

  • 최순호;허창수
    • 전기학회논문지
    • /
    • 제61권6호
    • /
    • pp.821-826
    • /
    • 2012
  • The streaming electrification process of vegetable insulating oils occurring when the oils contacted with solid material in a high power transformer circulation system seems to cause electrical discharge incidents and may cause failures. We therefore measured the dielectric breakdown voltage tendency of vegetable insulating oils flowing on the surface of the charging device with various velocity and temperature. First, the relation between the velocity and breakdown voltage tendency of vegetable oils, can be explained by volume effect and v-t effect. Second, experimental results show that applied voltage have little effect on dielectric breakdown voltage, when vegetable insulating oils used for large power transformer.

식물성절연유를 사용한 친환경 주상변압기 설계를 위한 절연파괴 특성 (Breakdown Properties for Insulation Design of the Environment-Friendly Pole Transformer using the Vegetable Insulating Oil)

  • 곽동순
    • 한국안전학회지
    • /
    • 제26권6호
    • /
    • pp.7-12
    • /
    • 2011
  • In recent years, environmental concerns have been raised on the use of poorly biodegradable fluids in electrical apparatus in regions where spills from leaks and equipment failure could contaminate the surroundings. The newly invented vegetable insulating oil is highly biodegradable and have negligible impact on the environment, human health and the ecosystem. For development of the environmental-friendly pole transformer using vegetable insulating oil, the dielectric constructions of the pole transformer were discussed in this paper. Depending on the dielectric constructions, the AC breakdown characteristics of the Nomex insulating papers and the vegetable insulating oil were studied by simulated electrode systems. Based on the experimental results, the maximum design stress($E_{max}$) for insulation design of the environmental-friendly pole transformer were suggested.

가속 열 열화에 따른 환경친화형 변압기 절연물의 전기적-기계적 특성 분석 (Analyses on Electrical-Mechanical Characteristics of Environment-friendly Transformer Insulating Material by Accelerated Thermal Aging)

  • 심명섭;안정식;최순호;정중일;이태호;허창수
    • 전기학회논문지
    • /
    • 제59권10호
    • /
    • pp.1832-1838
    • /
    • 2010
  • Aging of transformer insulating material in natural ester insulating oil is compared to that in conventional transformer oil. Aging of insulating paper and insulating oil have been studied by performing accelerated thermal aging test. Sealed aging test vessels containing cooper, laminated core, Kraft paper and insulating oil(natural oil or mineral oil) were aged at $140^{\circ}C$ for 500, 1000, 1500 and 2000 hours. Insulating oils after aging are investigated with total acid number, breakdown voltage and viscosity. Also, degradation of insulating paper after aging is determined using breakdown voltage and mechanical strength. Accelerated aging studies demonstrate a slower aging rate for natural ester insulating oil compared to the rate for conventional mineral oil.

유중(油中)코로나 방전(放電)으로 인(因)한 절연유(絶緣油)의 도전특성(導電特性)에 관한 연구(硏究) (A Study on Conductivity Characteristics of Insulating Oil by Corona Discharge in Oil)

  • 김영일
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제2권1호
    • /
    • pp.71-83
    • /
    • 1979
  • Not only the insulating oil used for extra high voltage and high capacity transformer has a lot of possibilites of a corona discharge in oil, but the oil is easily degraded by a response of light oxidization. This study is either to classfy, with priority given to a transformer oil produced in Korea belonging to, the insulating oil No. 2, the sample irradiated the ultraviolet rays, treated a corona discharge in oil by a high voltage DC source and done nothing, or to measure the characteristics of breakdown, V-i, I-t and electrode material. The obtained results can be summarized as followings: (1) Unless the sample is contacted with the air, on the process to irradiate the ultraviolet rays, the sample less influence on the changes of the electric characteristics. At the same time, if the sample is contacted with the air and irradiated the ultraviolet rays, the sample shows a remarkable changes of the electric characteristics, and a declined breakdown strength. This tells us that the influence of the light irradiation must be considered as a primary factor of degrading the insulating oil. (2) In the oil treated by a corona discharge, breakdown voltage is declined more than in the oil not to be treated with it. This means that the degradation of the insulating oil is getting increased by a corona discharge in oil. (3) It shows that the increase of conducting current has little to do with breakdown voltage. (4) The conducting current depending on the electrode materials can be put in order by value as Al>Cu>Fe. This is due to the differences of the work function of each metals, and an chemical reaction with the insulating oil. These result can be a great help in verifying the degradation progress of the insulating oil and furnish a new technical information to the manufacturers of the insulating oil and electrical equipment designers and operators. Besides, this study would be helpful to improve the electrical characteristics of the insulating oil produced in Korea.

  • PDF

절연 바니시의 전기적특성 (Electrical Properties of Insulating Varnish)

  • 김정훈;신종열;변두균;이종필;조경순;김왕곤;홍진웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.299-302
    • /
    • 2001
  • In this study, we are studied the electrical conduction and dielectric breakdown properties of insulating varnish. In order to analyze the molecular structure and physical properties of insulating varnishs, FT-lR was used. As the result, it can be confirmed that the peak of alcoholic group appeared in wavenumbers 3452[cm$\^$-1], the peak of =CH appeared in 3080[cm$\^$-1] and the peak of -CH appeared in 2919[cm$\^$-1] respectively. The following results were obtained from electrical properties of insulating varnish. The amplitude of current density was decreased by thickness increasing and the current density was effected by the thermal energy from external due to temperature increasing. In study temperature dependence of dielectric strength, the specimen of 10[$\mu\textrm{m}$] thickness was measurement from room temperature to 180[$^{\circ}C$]. It is confirmed that the temperature regions below 60[$^{\circ}C$] is due to electron avalanche breakdown and the temperature regions over 60[$^{\circ}C$] is due to free volume breakdown which makes electron movements easy.

  • PDF

가속열화에 따른 식물성절연유의 화학적.전기적 특성 분석 (Analysis on the Chemical and Electrical Characteristic of Vegetable oil by Accelerated Aging)

  • 최순호;정중일;허창수
    • 전기학회논문지
    • /
    • 제60권5호
    • /
    • pp.984-989
    • /
    • 2011
  • Electrical insulation is one of the most important part in a high voltage apparatus. Recently, researchers are interested in the environmental friendly vegetable oil from environmental viewpoint. Accelerated aging transformer insulating material in vegetable oil was compared to that of mineral oil. Accelerated aging oil samples produced in the oven at $140^{\circ}C$ for 500, 1000, 1500, 2000hours. And Real transformer insulation oils samples of vegetable oil and mineral oil were aged by thermal cycles repeating from $30^{\circ}C$ to $120^{\circ}C$. Samples were analyzed at 42, 63, 93, 143, 190, 240, 300 cycles. The mineral and vegetable insulating oils were investigated for breakdown voltage, water content, total acid number, viscosity, volume resistivity, insulating paper and oil permittivity, and dissolved gas analyses. The breakdown voltage of the vegetable insulating oil is higher than that found for the mineral oil; the accelerated aging progress decreased the breakdown voltage. The vegetable oil had a higher water saturation than the mineral oil; the vegetable oil has the superior water characteristics and breakdown voltage. And high viscosity of vegetable oil, care has to be taken, especially when designing the cooling system for a large transformer.

불평등 전계에서 변압기 절연유 절연파괴 연구 (Study on the Breakdown of the Transformer Insulating Oil in Nonuniform Electric Field)

  • 조하영;이순형;황미용;최용성
    • 한국전기전자재료학회논문지
    • /
    • 제36권3호
    • /
    • pp.280-285
    • /
    • 2023
  • A breakdown voltage and breakdown electric field of the transformer insulating oil of liquid dielectric were studied in uniform electric field and non-uniform electric field and the transformer insulating oil was observed by the process reached breakdown. Insulation performance evaluation of the liquid dielectric was evaluated at the electrode spacing of 2.5 mm under the conditions of domestic and international standards (KS C IEC 60156), so a comparative review was conducted at the electrode spacing of 2.5 mm. When the electrode spacing is 2.5 mm, the average breakdown voltage is 38.5 kV for sphere-sphere electrodes, 26.6 kV for plate-plate electrodes, 22.9 kV for needle-needle electrodes, and 24.3 kV for sphere-needle electrodes. 23.7 kV for the sphere-plate electrode, and 20.7 kV for the needle-plate electrode. From these results, it can be seen that the average value of the breakdown voltage at the electrode spacing of 2.5 mm, in ascending order, is sphere-sphere, plate-plate, sphere-needle, sphere-plate, needle-needle and needle-plate. It was found that the breakdown voltage of the unequal field was lower than that of the equal field.

The Thickness Dependence of Edge Effect in Thin Insulating Films

  • Song Jeong-Myen;Moon Byung-Moo;Sung Yung-Kwon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제4권4호
    • /
    • pp.13-17
    • /
    • 2003
  • This paper deals with the edge effect in thin insulating films, focusing on their dependence on film thickness. The finding is that the electric field is lowered at the edge as the film thickness is reduced, which, in turn, is closely related to dielectric breakdown voltage. In order to analyze this phenomenon, a simple capacitor model is introduced with which dependence of dielectric breakdown voltage around the electrode edge on the film thickness is explained. Due to analytical difficulty to get the expression of electrical field strength at the edge, an equivalent circuit approach is used to find the voltage expression first and then the electric field expression using it. The relation gets to an agreement with the experimental findings shown in the paper. This outcome may be extended to solve similar problems in multi-layer insulating films.

HVDC용 나노복합 절연재료의 DC절연파괴 분석 (Analysis of DC dielectric breakdown strength of Nano-composite insulation material for HVDC Cable)

  • 조성훈;정의환;이한주;임기조;정수현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.104-104
    • /
    • 2010
  • With the advent of nano-particle fillers in insulating materials, the insulating materials of superior quality have come to fore. In the recent past, nanocomposite LDPE/XLPE (Low Density Polyethylene/Cross Linked Polyethylene) power cable dielectrics have been synthesized. A preliminary evaluation of these new class of materials seem to show that, addition of small amounts of sub-micron inorganic fillers improved the dielectric properties of the composite, in particular, the volume resistivity, and the DC breakdown strength. The thermal behaviour, for example, the stability of composites against decomposition and ensuing electrical failure, do not seem to have been addressed. In a conventional XLPE insulated cable, the average thermal breakdown strength and maximum temperature at the onset of breakdown were seen to be markedly lower than the corresponding intrinsic breakdown strength and decomposition temperature. In this page, analysis of DC Breakdown of nano-composite insulating material for HVDC Cable is introduced.

  • PDF