• 제목/요약/키워드: instability mechanism

검색결과 351건 처리시간 0.025초

Chemistry of Rethenium Hydridonitrosyl Complexes Containing Chelating Triphosphines II-Structures of $[RuH_2(NO)P_3]^+$ ($P_3$ : Chelating Triphosphines)

  • Ik Mo Lee;Devon W. Meek;Judith Gallucci
    • Bulletin of the Korean Chemical Society
    • /
    • 제13권5호
    • /
    • pp.498-503
    • /
    • 1992
  • The protonation of RuH(NO)(Cyttp) resulted in the formation of $[RuH_2(NO)(Cyttp)]^+$ which is characterized as a classical cis-dihydried complex. This complex is fluxional and the intramolecular process involving a molecular hydrogen complex is proposed. This mechanism was further supported by the reactivity of this complex toward neutral 2-electron ligands. On the other hand, it failed to detect the existence of $[RuH_2(NO)(etp)]^+$ probably due to instability of the complex but the crystal structure of $[Ru(PMe_3)(NO)(etp)]^+$ formed by the protonation of RuH(NO)(etp) followed by the addition of $PMe_3$ was determined to have a trigonal bipyramidal structure with a linear NO in the equatorial plane and a facial etp ligand. The crystals are monoclinic, space group P21/n, with unit cell dimensions a = 14.130(2), b = 21.026 (3), c = 14.760 (1) ${\AA}$, ${\beta}$ = 97.88 $(l)^{\circ}$ V = 4344 ${\AA}^3$, Z = 4, R = 0.046 and $R_w$ = 0.056 for the 4779 intensities with $F_o^2 > 3{\sigma}(F_0^2)$ and the 440 variables.

유동섭동에 대한 화염응답 특성의 실험적 연구동향 (Current Research Status on Flame Response Characteristics to Flow Disturbances)

  • 서성현;박용진
    • 한국추진공학회지
    • /
    • 제18권5호
    • /
    • pp.87-94
    • /
    • 2014
  • 고성능 연소추진 시스템의 고주파 연소불안정 현상을 이해하기 위해서는 연소 열발생과 유동 섭동간의 에너지 교환 메커니즘 이해가 필수적이다. 화염의 동적 특성 변화를 인위적인 섭동을 통해 화염전달함수로 표현하고 이해하고자 하는 다수의 실험적 연구가 진행되어 왔다. 이 가운데 특히 연소기 입구 유동에 섭동을 가진하여 축 방향 섭동에 대한 화염반응을 살펴보는 연구가 활발히 진행되었다. 최근에는 실제 연소시스템에서 발생하는 횡 방향 음향모드를 모의하는 연구들이 진행되고 있다.

Combating Poverty in Malaysia: The Role of Zakat

  • ZULKIFLI, Muhammad Faris;TAHA, Roshaiza;AWANG, Rohila @ Norhamizah;MOHD NOR, Mohd Nazli;ALI, Azwadi
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권5호
    • /
    • pp.505-513
    • /
    • 2021
  • Poverty is often referred to as a phenomenon of scarcity, inadequacy or instability of income. Besides, poverty can also cause health issues, exacerbate social problems, leading to isolation, discrimination and loss of a bright future. Lately, the role of zakat (the compulsory giving of a set proportion of one's wealth to charity) as a useful tool in combating poverty has been highlighted since zakat collected will be distributed specifically to the poor and needy groups. This paper seeks to assess the role of zakat in combating poverty among recipients. A questionnaire was distributed to 300 participants selected from the list of recipients who received assistance from Zakat institutions. A cluster random sampling has been utilized to select sampling from the target population. The data were analyzed using SPSS to provide descriptive analysis. Past evidence has shown how zakat has able to transform the recipient into a payer especially through education or business assistance. Proper management of zakat institution is seen as a powerful mechanism to facilitate community development and to strengthen the Muslim economy. Results show the importance of zakat in the effort to eradicate poverty and further able to improve the asnaf's quality of life.

Stability evaluation for the excavation face of shield tunnel across the Yangtze River by multi-factor analysis

  • Xue, Yiguo;Li, Xin;Qiu, Daohong;Ma, Xinmin;Kong, Fanmeng;Qu, Chuanqi;Zhao, Ying
    • Geomechanics and Engineering
    • /
    • 제19권3호
    • /
    • pp.283-293
    • /
    • 2019
  • Evaluating the stability of the excavation face of the cross-river shield tunnel with good accuracy is considered as a nonlinear and multivariable complex issue. Understanding the stability evaluation method of the shield tunnel excavation face is vital to operate and control the shield machine during shield tunneling. Considering the instability mechanism of the excavation face of the cross-river shield and the characteristics of this engineering, seven evaluation indexes of the stability of the excavation face were selected, i.e., the over-span ratio, buried depth of the tunnel, groundwater condition, soil permeability, internal friction angle, soil cohesion and advancing speed. The weight of each evaluation index was obtained by using the analytic hierarchy process and the entropy weight method. The evaluation model of the cross-river shield construction excavation face stability is established based on the idea point method. The feasibility of the evaluation model was verified by the engineering application in a cross-river shield tunnel project in China. Results obtained via the evaluation model are in good agreement with the actual construction situation. The proposed evaluation method is demonstrated as a promising and innovative method for the stability evaluation and safety construction of the cross-river shield tunnel engineerings.

Shear failure and mechanical behavior of flawed specimens containing opening and joints

  • Zhang, Yuanchao;Jiang, Yujing;Shi, Xinshuai;Yin, Qian;Chen, Miao
    • Geomechanics and Engineering
    • /
    • 제23권6호
    • /
    • pp.587-600
    • /
    • 2020
  • Shear-induced instability of jointed rock mass has greatly threatened the safety of underground openings. To better understand the failure mechanism of surrounding rock mass under shear, the flawed specimens containing a circular opening and two open joints are prepared and used to conduct direct shear tests. Both experimental and numerical results show that joint inclination (β) has a significant effect on the shear strength, dilation, cracking behavior and stress distribution around flaws. The maximum shear strength, occurring at β=30°, usually corresponds to a unifrom stress state around joint and an intense energy release. However, a larger joint inclination, such as β=90°~150°, will cause a more uneven stress distribution and a stronger stress concentration, thus a lower shear strength. The stress distribution around opening changes little with joint inclination, while the magnitude varys much. Both compression and tension around opening will be greatly enhanced by the 30°-joints. In addition, a higher normal stress tends to enhance the compression and suppress the tension around flaws, resulting in an earlier generation and a larger proportion of shear cracks.

Comparative analysis of AGPase proteins and conserved domains in sweetpotato (Ipomoea batatas (L.) Lam.) and its two wild relatives

  • Nie, Hualin;Kim, Sujung;Kim, Jongbo;Kwon, Suk-Yoon;Kim, Sun-Hyung
    • Journal of Plant Biotechnology
    • /
    • 제49권1호
    • /
    • pp.39-45
    • /
    • 2022
  • Conserved domains are defined as recurring units in molecular evolution and are commonly used to interpret the molecular function and biochemical structure of proteins. Herein, the ADP-glucose pyrophosphorylase (AGPase) amino acid sequences of three species of the Ipomoea genus [Ipomoea trifida, I. triloba, and I. batatas (L.) Lam. (sweetpotato)] were identified to investigate their physicochemical and biochemical characteristics. The molecular weight, isoelectric point, instability index, and grand average of hyropathy markedly differed among the three species. The aliphatic index values of sweetpotato AGPase proteins were higher in the small subunit than in the large subunit. The AGPase proteins from sweetpotato were found to contain an LbH_G1P_AT_C domain in the C-terminal region and various domains (NTP_transferase, ADP_Glucose_PP, or Glyco_tranf_GTA) in the N-terminal region. Conversely, most of its two relatives (I. trifida and I. triloba) were found to only contain the NTP_transferase domain in the N-terminal region. These findings suggested that these conserved domains were species-specific and related to the subunit types of AGPase proteins. The study may enable research on the AGPase-related specific characteristics of sweetpotatoes that do not exist in the other two species, such as starch metabolism and tuberization mechanism.

Experiment investigation on flow characteristics of open natural circulation system

  • Qi, Xiangjie;Zhao, Zichen;Ai, Peng;Chen, Peng;Sun, Zhongning;Meng, Zhaoming
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1851-1859
    • /
    • 2022
  • Experimental research on flow characteristics of open natural circulation system was performed, to figure out the mechanism of the open natural circulation behaviors. The influence factors, such as the heating power, the inlet subcooled and the level of cooling tank on the flow characteristics of the system were examined. It was shown that within the scope of the experimental conditions, there are five flow types: single-phase stable flow, flash and geyser coexisting unstable flow, flash stable flow, flash unstable flow, and flash and boiling coexisting unstable flow. The geyser flow in flash and geyser coexisting unstable flow is different from classic geysers flow. The flow oscillation period and amplitude of the former are more regular, is a newly discovered flow pattern. By drawing the flow instability boundary diagram and sorting out the flow types, it is found that the two-phase unstable flow is mainly characterized by boiling and flash, which determine the behavior of open natural circulation respectively or jointly. Moreover, compared with full liquid level system, non-full liquid level system is more prone to boiling phenomenon, and the range of heat flux density and undercooling degree corresponding to unstable flow is larger.

전이성 대장암에 대한 면역치료의 최신 지견 (Recent Progress in Immunotherapy for Metastatic Colorectal Cancer)

  • 김성중;이준
    • Journal of Digestive Cancer Research
    • /
    • 제10권2호
    • /
    • pp.65-73
    • /
    • 2022
  • A breakthrough in immunotherapy has changed the outlook for metastatic colorectal cancer (mCRC) treatment as the immune surveillance evasion mechanism of tumor cells has been continuously elucidated. Immune checkpoint inhibitors (ICI), such as pembrolizumab, nivolumab, and ipilimumab, which block immune checkpoint receptors or ligands have been approved for the treatment of mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) mCRC based on numerous clinical studies. However, 50% of dMMR/MSI-H mCRC and most mismatch repair proficient/microsatellite stable mCRC remained unresponsive to current immunotherapy. Clinical trials on combination therapy that adds various treatments, such as target agents, chemotherapy, or radiation therapy to ICI, have been actively conducted to overcome this immunotherapy limitation. Further studies on safety and efficacy are needed although several trials presented promising data. Additionally, dMMR/MSI-H, tumor mutation burden, and programmed cell death ligand-1 expression have been studied as biomarkers for predicting the treatment response to immunotherapy, but the discovery and validation of more sensitively predictable biomarkers remained necessary. Thus, this study aimed to review recent studies on immunotherapy in mCRC, summarize the efficacy and limitation of immunotherapy, and describe the biomarkers that predict treatment response.

A PIC Simulation Study for Electron Preacceleration at Weak Quasi-Perpendicular Galaxy Cluster Shocks

  • Ha, Ji-Hoon;Kim, Sunjung;Ryu, Dongsu;Kang, Hyesung
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.36.2-36.2
    • /
    • 2021
  • In the outskirts of galaxy clusters, weak shocks with Ms < ~3 appear as radio relics where the synchrotron radiation is emitted from cosmic-ray (CR) electrons. To understand the production of CR electrons through the so-called diffusive shock acceleration (DSA), the electron injection into the DSA process at shocks in the hot intracluster medium (ICM) has to be described. However, the injection remains as an unsolved, outstanding problem. To explore this problem, 2D Particle-in-Cell (PIC) simulations were performed. In this talk, we present the electron preacceleration mechanism mediated by multi-scale plasma waves in the shock transition zone. In particular, we find that the electron preacceleration is effective only in the supercritical shocks, which have the sonic Mach number Ms > Mcrit ≈ 2.3 in the high-beta (β~100) plasma of the ICM, because the Alfven ion cyclotron instability operates and hence multi-scale plasma waves are induced only in such supercritical shocks. Our findings will help to understand the nature of radio relics in galaxy clusters.

  • PDF

HadGEM2-AO 모델이 모의한 AMOC 수십 년 변동 메커니즘 (A Mechanism of AMOC Decadal Variability in the HadGEM2-AO)

  • 위지은;김기영;이조한;부경온;조천호;김철희;문병권
    • 한국지구과학회지
    • /
    • 제36권3호
    • /
    • pp.199-209
    • /
    • 2015
  • 북대서양 자오면 순환(AMOC)은 그린란드 부근에서 고밀도 해수의 침강으로 유도되는데, 이것은 열과 물질을 수송시키기 때문에 기후 시스템의 중요한 요소이다. 이 연구는 전 지구 기후모델 중 하나인 HadGEM2-AO 모델에서 모의된 AMOC의 특징과 장기변동 메커니즘을 분석하였다. AMOC 지수를 이용한 지연 상관 분석을 통해 AMOC의 수십 년 변화는 해양 자체유지 변동으로 간주할 수 있었다. 즉 AMOC의 장기 변화는 남북 수온 경도와 해양 순환의 위상차로 인해 발생하는 불안정성에 의한 것으로 분석되었다. AMOC가 강해지면서 열의 북향 수송에 의해 남북 수온 경도가 작아지고, 따라서 해수의 순환과 열 수송이 줄어드는데, 이와 함께 고위도에서는 냉각이 유도되어 결과적으로 다시 AMOC가 강해지게 된다. 이 메커니즘은 저위도로부터 이류되는 열의 양에 따라 고위도 지역의 밀도 변화가 결정되기 때문에 AMOC의 변동을 염분 유도가 아닌 열적 유도 과정으로 이해할 수 있다.