• Title/Summary/Keyword: instability mechanism

Search Result 350, Processing Time 0.03 seconds

Investigation on flutter mechanism of long-span bridges with 2d-3DOF method

  • Yang, Yongxin;Ge, Yaojun;Xiang, Haifan
    • Wind and Structures
    • /
    • v.10 no.5
    • /
    • pp.421-435
    • /
    • 2007
  • A two-dimensional flutter analysis method (2d-3DOF method) was developed to simultaneously investigate the relationship between oscillation parameters and aerodynamic derivatives of three degrees of freedom, and to clarify the coupling effects of different degrees of freedom in flutter instability. With this method, the flutter mechanism of two typical bridge deck sections, box girder section and two-isolated-girder section, were numerically investigated, and both differences and common ground in these two typical flutter phenomena are summarized. Then the flutter stabilization effect and its mechanism for long-span bridges with box girders by using central-slotting were studied by experimental investigation of aerodynamic stability and theoretical analysis of stabilizing mechanism. Possible explanation of new findings in the evaluation trend of critical wind speed through central vent width is finally presented.

An Experimental Study on the Self-excited Instabilities in Model Gas Turbine Combustor (모델 가스터빈 연소기내의 자발 불안정성에 관한 실험적 연구)

  • Lee, Min-Chul;Hong, Jung-Goo;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.197-205
    • /
    • 2004
  • Most of gas turbines is operated by the type of dry premixed combustion to reduce NOx emission and economize fuel consumption. However this type operation, combustion induced instability brought failure problems cause by high pressure and heat release fluctuations. Though there has been lots of studies since Lord Rayleigh to understand this instability mechanism and control the instabilities, none of them made matters clear. In order to understand the instability phenomena, a simple experimental study with dump combustor was conducted at the moderate pressure and ambient temperature conditions. From this model gas turbine combustor self-excited instabilities at the resonance mode(200Hz) and bulk mode(10Hz) were occurred and observed at the three points of view; pressure, heat release and equivalence ratio which are acquired by peizo-electric transducer, HICCD camera and acetone LIF respectively. From this results we could see the instability mechanism clear with the account of time scale analysis which explained by the propagation of pressure wave to the upward of mixture stream and convectional transfer of the equivalence ratio fluctuation by this pressure fluctuation.

  • PDF

Mechanisms of Oblique Shock-Induced Combustion Instability

  • Choi, Jeong-Yeol;Jeung, In-Seuck
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.23-30
    • /
    • 2002
  • Instability of oblique detonation waves (ODW) at off-attaching condition was investigated through a series of numerical simulations. Two-dimensional wedge of finite length was considered in $H_2/O_2/N_2$ mixtures at superdetonative condition. Numerical simulation was carried out with a compressible fluid dynamics code and a detailed hydrogen-oxygen combustion mechanism. Present result reveals that there is a chemical kinetic limit of the ODW detachment, in addition to the theoretical limit predicted by Rankine-Hugoniot theory with equilibrium chemistry. Result also presents that ODW still attaches at a wedge as an oblique shock-induced flame showing periodically unstable motion, if the Rankine-Hugoniot limit of detachment is satisfied but the chemical kinetic limit is not. Mechanism of the periodic instability is considered as interactions of shock and reaction waves coupled with chemical kinetic effects. From the investigation of characteristic chemical time, condition of the periodic instability is identified as follows; at the detaching condition of the Rankine-Hugoniot theory, (1) flow residence time is smaller than the chemical characteristic time, behind the detached shock wave with heat addition, (2) flow residence time should be greater than the chemical characteristic time, behind an oblique shock wave without heat addition.

  • PDF

INTRODUCTION TO THE PHYSICS OF ACCRETION DISK

  • Wheeler, J. Craig
    • Publications of The Korean Astronomical Society
    • /
    • v.8 no.1
    • /
    • pp.163-168
    • /
    • 1993
  • At intermediate mass transfer rates, accretion disks in binary star systems undergo a thermally-driven limit cycle instability. This instability leads to outburst episodes when the disk is bright and the flow through the disk is rapid separated by long intervals when the disk is dim and the flow through it is low. This intrinsic outburst mechanism can help to understand a wide range of astrophysical phenomena from dwarf novae to soft X -ray transients involving white dwarf, neutron star, and black holes. and to a deeper understanding of the mechanism of angular transport and viscosity in the accretion disk.

  • PDF

Turing, Turing Instability, Computational Biology and Combustion (Turing, Turing 불안정성 그리고 수리생물학과 연소)

  • Kim, J.S.
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.1
    • /
    • pp.46-56
    • /
    • 2003
  • The present paper is concerned with the development of the computational biology in the past half century and its relationship with combustion. The modem computational biology is considered to be initiated by the work of Alan Turing on the morphogenesis in 1952. This paper first touches the life and scientific achievement of Alan Turing and his theory on the morphogenesis based on the reactive-diffusive instability, called the Turing instability. The theory of Turing instability was later extended to the nonlinear realm of the reactive-diffusive systems, which is discussed in the framework of the excitable media by using the Oregonator model. Then, combustion analogies of the Turing instability and excitable media are discussed for the cellular instability, pattern forming combustion phenomena and flame edge. Finally, the recent efforts on numerical simulations of biological systems, employing the detailed bio-chemical knietic mechanism is discussed along with the possibility of applying the numerical combustion techniques to the computational cell biology.

  • PDF

A CFD Study on Thermo-Acoustic Instability of Methane/Air Flames in Gas Turbine Combustor

  • Sohn, Chae-Hoon;Cho, Han-Chang
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1811-1820
    • /
    • 2005
  • Thermo-acoustic instability of methane/ air flames in an industrial gas-turbine combustor is numerically investigated adopting CFD analysis. The combustor has 37 EV burners through which methane and air are mixed and then injected into the chamber. First, steady fuel! air mixing and flow characteristics established by the burner are investigated by numerical analysis with single burner. And then, based on information on the flow data, the burners are modeled numerically via equivalent swirlers, which facilitates the numerical analysis with the whole combustion system including the chamber and numerous burners. Finally, reactive flow fields within the chamber are investigated numerically by unsteady analysis and thereby, spontaneous instability is simulated. Based on the numerical results, scaling analysis is conducted to find out the instability mechanism in the combustor and the passive control method to suppress the instability is proposed and verified numerically.

Nonlinear evolution of the relativistic Weibel instability driven by anisotropic temperature

  • Kaang, Helen H.;Mo, Chang
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.34.2-34.2
    • /
    • 2009
  • The relativistic Weibel instability has drawn attention as a main mechanism of the magnetic generation in the core of galaxies or in the formation of universe. The Weibel instability is not yet fully understood in the relativistic region. We investigated nonlinear saturation and decay of the relativistic Weibel instability. It is found that the early phase of the instability is in excellent agreement with the linear theory. But, an analysis based on an alternative magnetic trapping saturation theory reveals that a substantial discrepancy between the theory and simulation is revealed in the relativistic regime in contrast to an excellent agreement in the non-relativistic regime. The analysis of the Weibel instability beyond the quasilinear saturation stage shows an inverse cascade process via a nonlinear decay instability involving electrostatic fluctuation.

  • PDF

Experimental Study on Effects of Syngas Addition in Flame Propagation and Stability of DME-Air Premixed Flames (디메틸에테르-공기 예혼합화염의 화염전파와 화염안정성에 있어서 합성가스의 첨가효과에 관한 실험적 연구)

  • Song, Wonsik;Park, Jeong;Kwon, Ohboong;Yun, Jinhan;Kee, Sangin
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.4
    • /
    • pp.44-50
    • /
    • 2012
  • The present study was conducted to investigate the flame instability(evaluated by Markstein length and cellular instability) and laminar burning velocity in a constant volume combustion chamber at room temperature and elevated pressure up to 0.3 MPa to suggest the possibility of utilizing mixtures of syngas added DME-air premixed flames in internal combustion engines. The experimentally measured laminar burning velocities were compared to predictions calculated the PREMIX code with Zhao reaction mechanism. Discussions were made on effects of syngas addition into DME-Air premixed flames through evaluating laminar burning velocity, Markstein length, and cellular instability. Particular concerns are focused on cellular instability caused by hydrodynamic instability and diffusive-thermal instability.

Dynamic Stability Analysis of a Single Cam Drive Mechanism (단일 캠 구동기구의 동 안정성 해석)

  • 김홍보;전혁수;이종원;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.526-533
    • /
    • 1990
  • The dynamic stability of a single cam drive mechanism is investigated by an analytical approach. The nonlinear differential equation describing the motion of a single cam drive mechanism is linearized with respect to the imput power angle, and results a linear parametric differential equation. The instability region is examined by applying the harmonic balance method to linearized parametric equation having periodicity. Through the dynamic stability analysis of a single cam drive mechanism, it is observed that the parametric resonances exist and the instability regions tend to become wide as increasing the drive speed and follower mass.

Analysis of the West Coast Heavy Snowfall Development Mechanism from 23 to 25 January 2016 (2016년 1월 23일~25일에 발생한 서해안 대설 발달 메커니즘 분석)

  • Lee, Jae-Geun;Min, Gi-Hong
    • Atmosphere
    • /
    • v.28 no.1
    • /
    • pp.53-67
    • /
    • 2018
  • This study examined the lake effect of the Yellow Sea which was induced by the Siberian High pressure system moving over the open waters. The development mechanism of the convective cells over the ocean was studied in detail using the Weather Research and Forecasting model. Numerical experiments consist of the control experiment (CTL) and an experiment changing the yellow sea to dry land (EXP). The CTL simulation result showed distinct high area of relative vorticity, convergence and low-level atmospheric instability than that of the EXP. The result indicates that large surface vorticity and convergence induced vertical motion and low level instability over the ocean when the arctic Siberian air mass moved south over the Yellow Sea. The sensible heat flux at the sea surface gradually decreased while latent heat flux gradually increased. At the beginning stage of air mass modification, sensible heat was the main energy source for convective cell generation. However, in the later stage, latent heat became the main energy source for the development of convective cells. In conclusion, the mechanism of the west coast heavy snowfall caused by modification of the Siberian air mass over the Yellow Sea can be explained by air-sea interaction instability in the following order: (a) cyclonic vorticity caused by diabatic heating induce Ekman pumping and convergence at the surface, (b) sensible heat at the sea surface produce convection, and (c) this leads to latent heat release, and the development of convective cells. The overall process is a manifestation of air-sea interaction and enhancement of convection from positive feedback mechanism.