• Title/Summary/Keyword: instability flow

Search Result 763, Processing Time 0.03 seconds

Flow-induced Instability of Multi-wall Carbon Nanotubes for Various Boundary Conditions (경계조건에 따른 다중벽 탄소나노튜브의 유체유발 불안정성 변화)

  • Yun, Kyung-Jae;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.9
    • /
    • pp.805-815
    • /
    • 2010
  • This paper studies the influence of internal moving fluid and flow-induced structural instability of multi-wall carbon nanotubes conveying fluid. Detailed results are demonstrated for the variation of natural frequencies with flow velocity, and the flow-induced divergence and flutter instability characteristics of multi-wall carbon nanotubes conveying fluid and modelled as a thin-walled beam are investigated. Effects of various boundary conditions, Van der Waals forces, and non-classical transverse shear and rotary inertia are incorporated in this study. The governing equations and three different boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extended Galerkin's method which enables us to obtain more exact solutions compared with conventional Galerkin's method. This paper also presents the comparison between the characteristics of single-wall and multi-wall carbon nanotubes considering the effect of van der Waals forces. Variations of critical flow velocity for different boundary conditions of two-wall carbon nanotubes are investigated and pertinent conclusion is outlined.

Unsteady Flow Analysis through the Subcritical-Supercritical Transition Region (개수로에서의 상류-사류 천이영역에 대한 부정류 해석)

  • 한건연;박재홍;이종태
    • Water for future
    • /
    • v.27 no.2
    • /
    • pp.85-96
    • /
    • 1994
  • Numerical instability of Preissmann scheme is studied for unsteady flow analysis in a natural river. The solution strategies to overcome the instability problems are presented in this paper. The main causes of numerical instability of Preissmann scheme are transition flow, abrupt change in cross section, in-appropriate roughness coefficients, time step and distance step, rapidly rising hydrograph, dry bed and so on. Transition flow model is proposed for the analysis of the transition flow which changes from subcritical to supercritical or conversely. The subcritical and supercritical reaches are groped in the channel, then appropriate boundary conditions are introduced for each reach. The transition flow analysis produces stable solutions in calculating through the various transition conditions. Verification with an actual river system is necessary in the future.

  • PDF

TRANSITION IN THE FLOW PAST SIDE-BY-SIDE SQUARE CYLINDERS (수직방향으로 정렬된 정사각주 후류에서의 3차원 불안정성)

  • Choi, C.B.;Jang, Y.J.;Yoon, D.H.;Yang, K.S.
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.62-70
    • /
    • 2010
  • Secondary instability in the flow past two square cylinders in side-by-side arrangements is numerically studied by using a Floquet analysis. The distance between the neighboring faces of the two cylinders (G) is the key parameter which affects the secondary instability under consideration. In this paper, we present the critical Reynolds number for the secondary instability and the corresponding spanwise wave number of the most unstable (or least stable) wave for each G. Our results would shed light on a complete understanding of the onset of secondary instability in the presence of two side-by-side square cylinders.

Hydrodynamic Stability Analysis of KEB Boundary-Layer Flow (KEB 경계층 유동의 유동특성 해석)

  • Lee Yun-Yong;Lee Kwang-Won;Hwang Young-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.683-686
    • /
    • 2002
  • The hydrodynamic instability of the three-dimensional boundary-layer over a rotating disk has been numerically investigated for three cases flows using linear stability theory (i.e. Rossby number, Ro = -1, 0, and 1). Detailed numerical values of the disturbance wave number, wave frequency, azimuth angle, radius (Reynolds number, Re) and other characteristics have been calculated for $K{\acute{a}}rm{\acute{a}}n$, Ekman and $B{\"{o}}ewadt$ boundary-layer flows. Neutral curves for these flows are presented. Presented are the neutral stability results concerning the two instability modes (Type I and Type II) by using a two-point boundary value problem code COLUEW that was based upon the adaptive orthogonal collocation method using B-spline. The prediction from the present results on both instability modes among the three cases agrees with the previously known numerical and experimental data well.

  • PDF

Experimental Study on Instability of Two-Phase Loop Thermosyphon (루프형 2상 유동 열사이폰의 유동 불안정에 관한 실험적 연구)

  • 이석호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.5
    • /
    • pp.408-414
    • /
    • 2002
  • The instability of two-phase loop thermosyphons (TLTs) was investigated experimentally. Three orifice type inserts were used to study the effect of change in the pressure drop in the flow channel of the TLT on the flow instability and temperature fluctuation. It is observed that a decrease in the size of the orifice insert from 3.7mm (no insert) to 0.71mm drastically reduced the fluctuation of the temperature, especially at the evaporator section of the TLT With the orifice type insert of 0.71 mm for the TLT, the overall temperature fluctuation was almost completely eliminated, especially at higher power input to the TLT.

An Experimental Study on the Flame Localization Characteristics and Pulsating Instability in a Radial Multi-channel (반경방향 다중 채널 내 예혼합 화염의 안정화 특성과 맥동 불안정성에 관한 실험적 연구)

  • Lee, Dae Keun;Ko, Chang-Bog
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.41-43
    • /
    • 2013
  • In order to simulate and visually observe combustion phenomena in cylindrical radial-flow porous inert media, a radial multi-channel burner, made of transparent quartz plates, was fabricated. Flame stabilization characteristics and its pulsating instability in the burner were experimentally investigated with respect to various mixture flow rates and equivalence ratio. As a result, five different flame behaviors, such as stable flame, pulsating instability, sudden extinction, blowout and unstable extinction, were observed. Mean radial position of circularly arranged multi-flame and its averaged burning velocity were measured and then compared to the freely propagating flame. The multi-flame pulsation frequency is about several tens of Hz and it is supposed to be generated by the heat diffusion enhancement to cold pre-mixture by the intensive gas-solid interaction.

  • PDF

Micro-PIV Measurement of Water/Oil Two Phase Flow in a Y-Junction Microchannel (Y형 마이크로채널에서의 물/기름 2상 유동에 대한 Micro-PIV 측정)

  • Yoon,Sang-Youl;Ko, Choon-Sik;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.682-687
    • /
    • 2004
  • Y-junction microchannels are widely used as a flew mixer. Fluids are entered from two branch channels and merged together at a combined channel. In this study, we suggest a simple method to create the fluid digitization using flow instability phenomena. Two immiscible liquids (water/oil) are infused continuously to each Y-junction inlets. Because of the differences in fluid and flow properties at the interface, oil droplet is formed automatically followed by flow instability. In order to clarify the hydrodynamic aspects involved in oil droplet formation, a quantitative flow visualization study has performed. Highly resolved velocity vector fields are obtained by a micro-PIV technique, so that detail flow structures around the droplet are illustrated. In this study, fluorescent particles were mixed with water only for visualization of oil droplet and velocity field measurement in water flow.

Experimental study of boundary layer at the entrance of a cavity (공동 입구의 경계층에 관한 실험적 연구)

  • Jung Yong-Wun;Park Seung-O;Lee Duck-Joo
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.775-778
    • /
    • 2002
  • In order to analyse the mechanism of a flow tone around a cavity, the correlations between the flow in the cavity and the boundary layer flow in front of the cavity are studied experimentally in this paper. The instability In the boundary layer forms the vortex at the front edge of the cavity and the flow tone is occurred by the vortex breakdown at the rear edge of the cavity Therefore, the boundary layer measurement is important in the cavity flow control. We measure the velocity of the boundary layer at the entrance of the cavity using hot-wire anemometry and the flow tone around the cavity by microphone. The boundary layer characteristic is changed by the various angle of the flap on the front edge of the cavity, while it is less influenced by the ratio of length and depth of the cavity.

  • PDF

Numerical Study of Wavy Taylor-Couette Flow(I) -Without an Axial Flow- (Wavy Taylor-Couette 유동에 대한 전산해석 (I) -축방향 유동이 없는 경우-)

  • Hwang, Jong-Yeon;Yang, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.697-704
    • /
    • 2001
  • The flow between two concentric cylinders, with the inner one rotating, is studied using numerical simulation. This study considers the identical flow geometry as in the experiments of Wereley and Lueptow[J. Fluid Mech., 364, 1998]. They carried out experiment using PIV to measure the velocity fields in a meridional plane of the annulus in detail. When Taylor number increases over the critical one, the flow instability caused by curved streamlines of the tangential flow induces Taylor vortices in the flow direction. As Taylor number further increases over another critical one, the steady Taylor vortices become unsteady and non-axisymmetrically wavy. The velocity vector fields obtained also show the same flow features found in the experiments of Wereley and Lueptow.

Drirect Numerical Simulation of Transitional Separated Flows Part I:Primary Instability (천이박리유동의 직접수치모사 Part I:주 불안정성)

  • Yang, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2965-2972
    • /
    • 1996
  • Transitional flow in an obstructed channel is investigated using numerical simulation. Two-dimensional thin obstacles are mounted symmetrically in the vertical direction and periodically in the streamwise direction. Flow separation occurs at the tip of the sharp obstacles. Depending on the Reynolds number, the flow undergoes Hopf bifurcation as the primary instability leading to a two-dimensional unsteady periodic solution. At higher Reynolds numbers, the unsteady solution exhibits a symmetry-breaking bifurcation which results in an unsteady asymmetric solution. The results are compared with experiments currently available, and show a good agreement.