• Title/Summary/Keyword: inspection.calibration

Search Result 146, Processing Time 0.025 seconds

A Study on the Control Characteristics of Line Scan Light Source for Machine Vision Line Scan Camera (머신 비전 라인 스캔 카메라를 위한 라인 스캔 광원의 제어 특성에 관한 연구)

  • Kim, Tae-Hwa;Lee, Cheon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.371-381
    • /
    • 2021
  • A machine vision inspection system consists of a camera, optics, illumination, and image acquisition system. Especially a scanning system has to be made to measure a large inspection area. Therefore, a machine vision line scan camera needs a line scan light source. A line scan light source should have a high light intensity and a uniform intensity distribution. In this paper, an offset calibration and slope calibration methods are introduced to obtain a uniform light intensity profile. Offset calibration method is to remove the deviation of light intensity among channels through adding intensity difference. Slope calibration is to remove variation of light intensity slope according to the control step among channels through multiplying slope difference. We can obtain an improved light intensity profile through applying offset and slope calibration simultaneously. The proposed method can help to obtain clearer image with a high precision in a machine vision inspection system.

Calibration of Detection System of Crack in Concrete Structure by Using Image Processing Technology

  • Kim, Su-Un;Shin, Sung-Woo;Park, Jeong-Hak;Choi, Man-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.6
    • /
    • pp.626-634
    • /
    • 2011
  • The investigation of concrete structure typically relies on visual inspection which is one of the basic inspection techniques. Image processing techniques play a crucial role in the growing field of automatic surface inspection technique. However, kinds of inspection equipment, environmental condition and detection algorithm have much influence on the reliability of inspection result. This paper proposes a verification method and testing procedure for the reliability of inspection results and surveys characteristics of image acquisition systems and crack inspection algorithms.

Level Calibration of Ultrasonic Nondestructive Testing Considering Flaw Position (불연속부의 위치를 고려한 초음파비파괴검사 등급보정)

  • Shin, Byoung-Chul;Song, Ho-San;Jeong, Hwa-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.4
    • /
    • pp.155-160
    • /
    • 2001
  • KS-code(KS B 0896) for nondestructive ultrasonic testing classifies the quality level by relative flaw size only. But flaw position is more important than the flaw size. Test blocks having artificial holes near surface show lower yield load than the blocks having deeply located holes from the surface. So, level calibration table was proposed for classifying the quality level of welded steel structures.

  • PDF

Intelligent Pattern Matching Based on Geometric Features for Machine Vision Inspection (머신비전검사를 위한 기하학적 특징 기반 지능 패턴 정합)

  • Moon Soon-Hwan;Kim Gyung-Bum;Kim Tae-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.6
    • /
    • pp.1-8
    • /
    • 2006
  • This paper presents an intelligent pattern matching method that can be used to acquire the reliable calibration data for automatic PCB pattern inspection. The inaccurate calibration data is often acquired by geometric pattern variations and selecting an inappropriate model manual. It makes low the confidence of inspection and also the inspection processing time has been delayed. In this paper, the geometric features of PCB patterns are utilized to calculate the accurate calibration data. An appropriate model is selected automatically based on the geometric features, and then the calibration data to be invariant to the geometric variations(translation, rotation, scaling) is calculated. The method can save the inspection time unnecessary by eliminating the need for manual model selection. As the result, it makes a fast, accurate and reliable inspection of PCB patterns.

  • PDF

Developing an ITS Device's Inspection·Calibration System Based on the Study of Similar Cases (사례분석을 통한 ITS 장비 검·교정체계의 구축방안 연구)

  • Baik, Nam Cheol;Lee, Sang Hyup;Oh, Seung Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.17-21
    • /
    • 2006
  • The systematic validation of the ITS devices' performance reliability is very important because it helps their performance reliability to be maintained in a certain level, enabling to assure the reliability of the collected data, processed data and provided information. Although the government's regulation, "Transportation Efficiency Act", which requires ITS devices to be validated, was passed in 2001, no systematic inspection and calibration procedures have been developed so far. Therefore, in this study the systematic and efficient inspection and calibration method or procedure is investigated by reviewing the similar cases and best practices in Korea and overseas and some recommendations are made.

Error propagation in 2-D self-calibration algorithm (2차원 자가 보정 알고리즘에서의 불확도 전파)

  • 유승봉;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.434-437
    • /
    • 2003
  • Evaluation or the patterning accuracy of e-beam lithography machines requires a high precision inspection system that is capable of measuring the true xy-locations of fiducial marks generated by the e-beam machine under test. Fiducial marks are fabricated on a single photo mask over the entire working area in the form of equally spaced two-dimensional grids. In performing the evaluation, the principles of self-calibration enable to determine the deviations of fiducial marks from their nominal xy-locations precisely, not being affected by the motion errors of the inspection system itself. It is. however, the fact that only repeatable motion errors can be eliminated, while random motion errors encountered in probing the locations of fiducial marks are not removed. Even worse, a random error occurring from the measurement of a single mark propagates and affects in determining locations of other marks, which phenomenon in fact limits the ultimate calibration accuracy of e-beam machines. In this paper, we describe an uncertainty analysis that has been made to investigate how random errors affect the final result of self-calibration of e-beam machines when one uses an optical inspection system equipped with high-resolution microscope objectives and a precision xy-stages. The guide of uncertainty analysis recommended by the International Organization for Standardization is faithfully followed along with necessary sensitivity analysis. The uncertainty analysis reveals that among the dominant components of the patterning accuracy of e-beam lithography, the rotationally symmetrical component is most significantly affected by random errors, whose propagation becomes more severe in a cascading manner as the number of fiducial marks increases

  • PDF

A Study on the Vision-Based Inspection System for Ball-Stud (비전을 이용한 볼-스터드 검사 시스템에 관한 연구)

  • 장영훈;권태종;한창수;문영식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.7-13
    • /
    • 1998
  • In this paper, an automatic ball-stud inspection system has been developed using the computer-aided vision system. Index table has been used to get the rapid measurement and multi-camera has been used to get the high resolution in physical system. Camera calibration was suggested to perform the reliable inspection. Image processing and data analysis algorithms for ball stud inspection system have been investigated and were performed quickly with high accuracy. As a result, inspection system of a ball stud could be used with a high resolution in real time.

  • PDF

Evaluation on the Effect of Ultrasonic Testing due to Internal Medium of Pipe in Nuclear Power Plant (원자력발전소 배관 내부 매질이 초음파검사에 미치는 영향 평가)

  • Yoon, Byung Sik;Kim, Yong Sik;Yang, Seung Han
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.9 no.1
    • /
    • pp.25-30
    • /
    • 2013
  • The periodic inspection of piping and pressure vessels welds in nuclear power plant has to provide reliable result related to weld flaws, such as location, maximum amplitude response, ultrasonic length, height and finally the nature or flaw pattern. The founded flaw in ultrasonic inspection is accepted or rejected based on these data. Specially, the amplitude of flaw response is used as basic parameter for flaw sizing and it may cause some deviation in length sizing result. Currently the ultrasonic inspections in nuclear power plant components are performed by specific inspection procedure which describing inspection technique include inspection system, calibration methodology and flaw characterizing. To perform ultrasonic inspection during in-service inspection, reference gain should be established before starting ultrasonic inspection by the requirement of ASME code. This reference gain used as basic criteria to evaluate flaw sizing. Sometimes, a little difference in establishing reference gain between calibration and field condition can lead to deviation in flaw sizing. Due to this difference, the inspection result may cause flaw sizing error. Therefore, the objective of this study is to compare and evaluate the ultrasonic amplitude difference between air filled and water filled pipe in nuclear power plant. Additionally, the accuracy of flaw sizing is estimated by comparing both conditions.

A Study of the B/STUD Inspection System Using the Vision System (비전을 이용한 B/STUD 검사 시스템에 관한 연구)

  • 장영훈;한창수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1120-1123
    • /
    • 1995
  • In this paper, an automatic B/STUD inspection system has been developed using the computer aided vision system. Index Table has been used to get the rapid measurement and multi-camera has been used to get the high resolution in mechanical system. Camera calibration was suggested to perform the reliable Inspection. Image processing and data analysis algorithms for B/STUD inspection system has been investigated and were performed quickly with high accuracy. As a result, Inspection system of a B/STUD can be measured with a high resolution in real time.

  • PDF

The Study of the Geometric Structure Optimization for the Stereo X-ray Inspection System Using the Calibration (Calibration을 통한 스테레오 X-ray 검색장치의 기하구조 최적화 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho;Lee, Seung-Min;Park, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3422-3427
    • /
    • 2010
  • In this paper, we presents a sensor calibration technique using stereo X-ray images to provide efficient inspection of fast moving cargo objects. Stereo X-ray scanned images are acquired from a specially designed equipment which consists of a X-ray source, dual-linear array detector, and a conveyor system. Dual detector is installed so that rectified stereo X-ray images of objects are acquired. Using the stereo X-ray images, we carry out a sensor calibration to find the correspondences between the images and reconstruct 3-D shapes of real objects. Using the Image acquired from the stereo detectors with varying distances, we calculated the GCP(ground control point)of the image. And we figure out the error by comparing calculated GCP and GCP of the real object. The experimental results show the proposed technique can enhance the accuracy of stereo matching and give more efficient visualization for cargo inspection image.