• Title/Summary/Keyword: inspection model

Search Result 1,277, Processing Time 0.027 seconds

VR-based education system for inspection of concrete bridges

  • Miyamoto, Ayaho;Konno, Masa-Aki;Rissanen, Tommi
    • Computers and Concrete
    • /
    • v.3 no.1
    • /
    • pp.29-42
    • /
    • 2006
  • In this study, a novel education system for inspection of concrete bridges is presented. The new education approach uses virtual reality (VR) and three-dimensional computer graphics (3DCG) in training engineers to become bridge inspection specialists. The slow time-dependent deterioration of concrete bridges can be reproduced on the computer screen in any chosen time frame, thus providing the trainees with illustrative and educative insight into the deterioration problem. In the proposed VR/3DCG approach a three-dimensional model of concrete bridge, including surfaces, viewpoints and walkthrough paths is created. With the help of this virtual bridge model, an experienced bridge inspection specialist teaches the different deterioration phenomena of concrete bridges to the trainees. The new system was tested, and the inspection results from the case bridge showed that in comparison with the traditional Japanese bridge inspection education system, the new system gives better results. In addition to the improvement of quality of bridge inspections, the new VR/3DCG system-based education brings along some other, more intangible benefits.

Development of Stochastic Decision Model for Estimation of Optimal In-depth Inspection Period of Harbor Structures (항만 구조물의 최적 정밀점검 시기 추정을 위한 추계학적 결정모형의 개발)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.2
    • /
    • pp.63-72
    • /
    • 2016
  • An expected-discounted cost model based on RRP(Renewal Reward Process), referred to as a stochastic decision model, has been developed to estimate the optimal period of in-depth inspection which is one of critical issues in the life-cycle maintenance management of harbor structures such as rubble-mound breakwaters. A mathematical model, which is a function of the probability distribution of the service-life, has been formulated by simultaneously adopting PIM(Periodic Inspection and Maintenance) and CBIM(Condition-Based Inspection and Maintenance) policies so as to resolve limitations of other models, also all the costs in the model associated with monitoring and repair have been discounted with time. From both an analytical solution derived in this paper under the condition in which a failure rate function is a constant and the sensitivity analyses for the variety of different distribution functions and conditions, it has been confirmed that the present solution is more versatile than the existing solution suggested in a very simplified setting. Additionally, even in that case which the probability distribution of the service-life is estimated through the stochastic process, the present model is of course also well suited to interpret the nonlinearity of deterioration process. In particular, a MCS(Monte-Carlo Simulation)-based sample path method has been used to evaluate the parameters of a damage intensity function in stochastic process. Finally, the present stochastic decision model can satisfactorily be applied to armor units of rubble mound breakwaters. The optimal periods of in-depth inspection of rubble-mound breakwaters can be determined by minimizing the expected total cost rate with respect to the behavioral feature of damage process, the level of serviceability limit, and the consequence of that structure.

Analysis of Damage Patterns for Gas Turbine Combustion Liner according to Model Change (모델 변천에 따른 가스터빈 연소기 라이너의 부위별 손상유형 분석)

  • Kim, Moon-Young;Yang, Sung-Ho;Park, Sang-Yeol;Kim, Sang-Hoon;Park, Hye-Sook;Won, Jong-Beom
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2862-2867
    • /
    • 2008
  • High-temperature components of gas turbine operated for certain period of time can be reused by being repaired or rejuvenated. In case of the gas turbine combustion liners, the biggest and the most important one in the high-temperature components, come in a repair shop after operated for 8,000 or 12,000 hours according to the model and go through the repair and rejuvenation in order to be reused. A stated combustion liner is the first channel which has the combustion gas reached a nozzle from a fuel nozzle. Materials and coating properties of old and new model combustion liners were investigated. To repair these components after the visual inspection, the coatings of combustion liners were removed and then FPI(Fluorescent Penetrant Inspection), a kind of the NDI(Non-Destructive Inspection), was conducted. Damage patterns and the number of the damaged components were classified and analyzed based on data provided from the visual inspection over a long period of time. Focusing on the difference between old model and new model combustion liners, we analyzed the damage distribution and changes and consequently concluded that new model combustion liner would increase repair rate.

  • PDF

Storage Reliability Prediction Model for Missile subjected to Non-periodic Test and Periodic Inspection excluding Overlapped Failures (수시점검 및 정기검사 시 고장의 중복을 배제한 유도탄 저장신뢰도 예측 모델)

  • Jo, Boram;Ahn, Jangkeun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.599-604
    • /
    • 2018
  • For missile systems, sustaining high reliability and ensuring economical maintenance are very important. In the Republic of Korea, for most missiles, periodic inspection is mandatory for missiles in the field. Every fixed number of years, they are returned to the ordnance depot to be tested and repaired if faults are found. Almost all missiles have a built-in test (BIT) capability. With the BIT, faulty missiles can be isolated anytime during operations or storage in the launchers. So the reliability and the maintenance costs of the missiles greatly depend on the length of the inspection cycle and the BIT/inspection quality. In this paper, we suggest a model for predicting the storage reliability of missiles subjected to non-periodic tests and periodic inspections, excluding overlapping failures. Some numerical examples are given. This model will be useful for determining the length of the periodic inspection cycle.

Optimal Two-Stage Periodic Inspection Policy for Maintaining Storage Reliability (저장신뢰도 유지를 위한 최적 2단계 주기적 검사정책)

  • Cho, Yong-Suk;Lee, Joo-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.3
    • /
    • pp.387-402
    • /
    • 2008
  • In this thesis we propose a two-stage periodic inspection model for maintaining the reliability of a system in long-term storage. There are two types of tests available; a fallible test and an error-free test. The system is overhauled at detection of failure or when the storage reliability after inspection becomes less than or equal to the prespecified value. The expected cost per unit time until overhaul is derived and a procedure for minimizing the expected cost is suggested. The two-stage periodic inspection model is compared with the one-stage periodic inspection model for various parameters of the cost function when the failure time follows exponential and Weibull distributions. The proposed model is then applied to an existing missile system for comparison with the current inspection policy.

Intelligent Pattern Matching Based on Geometric Features for Machine Vision Inspection (머신비전검사를 위한 기하학적 특징 기반 지능 패턴 정합)

  • Moon Soon-Hwan;Kim Gyung-Bum;Kim Tae-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.6
    • /
    • pp.1-8
    • /
    • 2006
  • This paper presents an intelligent pattern matching method that can be used to acquire the reliable calibration data for automatic PCB pattern inspection. The inaccurate calibration data is often acquired by geometric pattern variations and selecting an inappropriate model manual. It makes low the confidence of inspection and also the inspection processing time has been delayed. In this paper, the geometric features of PCB patterns are utilized to calculate the accurate calibration data. An appropriate model is selected automatically based on the geometric features, and then the calibration data to be invariant to the geometric variations(translation, rotation, scaling) is calculated. The method can save the inspection time unnecessary by eliminating the need for manual model selection. As the result, it makes a fast, accurate and reliable inspection of PCB patterns.

  • PDF

Lot Sizing and Quality Inspection Schedules with Machine Breakdown (기계 고장을 고려한 생산 및 품질검증 정책)

  • 이창환
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.21 no.3
    • /
    • pp.143-157
    • /
    • 1996
  • This paper addresses the effects of an imperfect production process on the optimal production quantity and quality inspection policies. The system is assumed to deteriorate during the production process. The result are either the production of a number of defective items or the breakdown of the production meachine. A simple rule has been suggested to determine whether multiple quality in spection is workth or not. Furthermore, when multiple inspection policy is adopted, the optimal in spection schedule is shown to be equally spaced throughout the production cycle. Exact solution and approximation of the optimal production quantity and approximation of the optimal number of inspection are provided. Finally , to better understand the model of this paper, comparisons between this model and classical EMQ model are provided.

  • PDF

A Research on the Determining Model of the Optimizing Maintenance Interval in TBM for the Preventive Maintenance of Facilities (설비예방보전을 위한 TBM의 최적보전주기 설정모델 연구)

  • Kwon Oh-Woon;Lee Hong-Chul
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.105-117
    • /
    • 2003
  • The purpose of this research aimed at performing the easy design. and also the easy on-the-job application or the maintenance interval determination methodology by presenting the determining model or the optimizing maintenance interval in TBM for the preventive maintenance or facility TBM(time-based maintenance) as the preventive maintenance requires the adequate determination or the maintenance interval. The maintenance interval or TBM shall be applied differently for the each interval such as He patrol inspection, maintenance, overhaul inspection. exchange. And it is based on the composition level of equipment. The already informed theories or interval determination methodology for the patrol inspection. repair. and overhaul inspection are difficult for adopting because or the several restriction problems in applying the maintenance schemes as the theory So, the model for determining the optimizing exchange interval or part, maintenance interval of auxiliary machine, unit equipment etc. was presented to apply in the maintenance easily and appropriately.

  • PDF

Optimal Inspection Policy in an Economic Production Quantity with Random Defectives (불량품을 갖는 경제적 생산량 모델의 최적 검사 정책에 관한 연구)

  • Jo, Jae-Rip
    • Journal of Korean Society for Quality Management
    • /
    • v.20 no.2
    • /
    • pp.1-10
    • /
    • 1992
  • In this paper, we study a joint lot sizing and inspection policy under an EPQ(Economic Production Quantity) model where a random proportion of units are defectives. Those units can be discovered only through costly inspection. The problem is thus bivariate : both lot size and fraction to inspect are to be chosen. We first analyze a model in which the only penalty for uninspected defectives is financial, and then consider a model where defectives units cannot be used and thus must be replaced by non-defective ones. As a result it can be proved that this inspection policy costs economically and is to be decided effectively for the Economic Production Quantity constraining the fraction to inspect.

  • PDF

Use of the Mass-Spying Lattice Model for Simulation of Ultrasonic Waves in Austenitic Welds

  • Baek, Eun-Sol;Yim, Hyun-June
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.1
    • /
    • pp.30-39
    • /
    • 2006
  • Feasibility is studied for an application of the mass-spring lattice model (MSLM), a numerical model previously developed for unidirectional composites, to the numerical simulation of ultrasonic inspection of austenitic welds modeled as transversely isotropic. Fundamental wave processes, such as propagation, reflection, refraction, and diffraction of ultrasonic waves in such an inspection are simulated using the MSLM. All numerical results show excellent agreement with the analytical results. Further, a simplified model of austenitic weld inspection has been successfully simulated using the MSLM. In conclusion, a great potential of the MSLM in numerically simulating ultrasonic inspections of austenitic welds has been manifested in this work, though significant further efforts will be required to develop a model with field practicality.