• Title/Summary/Keyword: insolation

Search Result 386, Processing Time 0.024 seconds

Solar Radiation Measurement and Analysis of a High Mountain Area (고산지대의 일사량 특성분석 - 소백산과 그 인접 저지대를 중심으로 -)

  • Jo, Dok-Ki;Lee, Tae-Kyu;Chun, Il-Soo;Jeon, Hong-Seok;Auh, Chung-Moo
    • Solar Energy
    • /
    • v.16 no.2
    • /
    • pp.49-63
    • /
    • 1996
  • Site elavation is one of the major factors which is influencing the incoming insolation. Because nonpermanent gases like ozone, water vapor are unmixed components of the atmosphere and their concentrations are function of height, the site elevation effects the relative proportion of the atmospheric constituents. We have measured solar radiation on Sobaek(1,350m) and in Poonggi area(280m). These values were compared to investigate the their charateristics and the potential for the solar utilization as an alternative energy for both high altitude area and low altitude area. From the results, we conclude that 1) Yearly mean 4,093 $kcal/m^2$. day of the horizontal global radiation in Mt. Sobaek was evaluated for clear day. 2) Insolation on Mt. Sobaek is $6{\sim}7%$ higher than Poonggi area during summer and winter seasons. 3) A significant difference of atomospheric clearness index is observed between Mt. Sobaek and Poonggi area at the same latitude.

  • PDF

Insolation Modeling using Climate and Geo-Spatial Elements (기후요소와 지형 공간요소를 이용한 일사량 모델링)

  • Kim, Byung-Woo;Kang, In-Joon;Han, Ki-Bong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.79-86
    • /
    • 2010
  • This research is a thing about reverse operation about the solar power for location decision and increasing efficiency of the solar power generation equipments. The purpose of this research is reverse operation about the amount of sunshine using the climate and spatial elements. Following the result of correlation analysis, the wind-speed and cloud-amount factor are excluded, because the correlation and significance coefficients are out of value. Each outcome of regression analysis using the other four climate elements, and regression analysis using spatial elements is what the amount of sunshine and the solar altitude are the most influence to the insolation-modeling. Doing the regression analysis based on the precedent result make the result that climate elements have bigger coefficient of regression than spatial elements. This outcome means the climate elements are more influence than spatial elements.

Development of 10 kW Dish-Stirling System for Commercialization and Analysis of Operating Characteristics (10 kW급 접시형 태양열발전시스템 사업모델 개발 및 운전특성 분석)

  • Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.118-124
    • /
    • 2010
  • In order to develop commercial model of 10kW dish-Stirling solar thermal power system, modification for the exiting facility was taken for a year as a Leading Project in KIER. During the project, solar tracking system, control and monitoring system and high durability reflector were developed and long term operation were performed. The solar tracking system was tested for four months to investigate the degree of precision and adapted to the control system for an actual operation from October in 2009. The sun tracking accuracy of ${\pm}4$ mrad using modified control system was obtained and the system operated successfully during the experimental period. The monitoring system displays engine pressure, electric generation amounts, generator RPM, receiver temperatures, and etc. from Stirling engine and weather data of Direct Normal Irradiation, Horizontal Global Insolation, wind speed & direction, and atmosphere temperature from weather station. According to the operating results in a clear sky day, electric power of 6,890 W was generated at the DNI value of 850 W/$m^2$ and the averaged solar-to-electricity efficiency during a whole day reached to 18.99%. From the overall operating results, linear power generation trend could be observed with increasing DNI value. The solar-to-electricity efficiency achieved to 19% around the DNI value of 700 W/$m^2$ and increased to 20% when the DNI value goes up to 900 W/$m^2$.

A Study on the Characteristics of Antecedent Meteorologic Conditions on High Ozone Days in Busan (부산지역 고농도 오존일의 선행 기상 특성 연구)

  • Do, Woo-Gon;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.24 no.8
    • /
    • pp.993-1001
    • /
    • 2015
  • Comparing to the other air pollutants like $SO_2$, CO, the number of exceedance of the ozone national ambient air quality standard(NAAQS) and the ozone warning increased recently in Busan. The purpose of this study is to find out the preliminary symptoms for high ozone days in Busan area. In order to find out the preliminary symptoms, the hourly ozone data at air quality monitoring stations and the hourly meterological parameters at Busan regional meteorological 2007 to 2013 were used for the analysis. Averaged daily max ozone concentration was the highest(0.055 ppm) at Noksan and Youngsuri in the ozone season from 2007 to 2013. The horizontal distributions of daily max. ozone including all stations in Busan at high ozone days(the day exceeding 0.1 ppm of ozone concentration at least one station) were classified from two to five clusters by hierarchial cluster analysis. The meteorological variables showing strong correlation with daily max. ozone were the daily mean dew point temperature, averaged total insolation, the daily mean relative humidity and the daily mean cloud amount. And the most frequent levels were $19-23^{\circ}C$ in dew point temperature, $21-24 MJ/m^2$ in total insolation on the day before, $2.6-3.0 MJ/m^2$ on the very day, 67-80% in relative humidity and 0-3 in cloud amount.

A Case Study for Analyzing the Optimal Location for A Solar Power Plant via AHP Analysis with Fine Dust and Weather Information (미세먼지와 기상정보 기반의 AHP 분석을 통하여 태양광 발전소 최적입지선정에 대한 사례연구)

  • Lee, Geon-ju;Lee, Gi-Hyun;Kang, Sung-Woo
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.4
    • /
    • pp.157-167
    • /
    • 2017
  • Solar energy has been known as a successful alternative energy source, however it requires a large area to build power generation facilities compared to other energy sources such as nuclear power. Weather factors such as rainy weather or night time impact on solar power generation because of lack of insolation and sunshine. In addition, solar power generation is vulnerable to external elements such as changes in temperature and fine dust. There are four seasons in the Republic of Korea hereby variations of temperature, insolation and sunshine are broad. Currently factors that cause find dust are continuously flowing in to Korea from abroad. In order to build a solar power plant, a large area is required for a limited domestic land hereby selecting the optimal location for the plant that maximizes the efficiency of power generation is necessary. Therefore, this research analyze the optimal site for solar power generation plant by implementing analytic hierarchy process based on weather factors such as fine dust. In order to extract weather factors that impact on solar power generation, this work conducts a case study which includes a correlation analysis between weather information and power generation.

Derivation of Typical Meteorological Year of Daejeon from Satellite-Based Solar Irradiance (위성영상 기반 일사량을 활용한 대전지역 표준기상년 데이터 생산)

  • Kim, Chang Ki;Kim, Shin-Young;Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.6
    • /
    • pp.27-36
    • /
    • 2018
  • Typical Meteorological Year Dataset is necessary for the renewable energy feasibility study. Since National Renewable Energy Laboratory has been built Typical Meteorological Year Dataset in 1978, gridded datasets taken from numerical weather prediction or satellite imagery are employed to produce Typical Meteorological Year Dataset. In general, Typical Meteorological Year Dataset is generated by using long-term in-situ observations. However, solar insolation is not usually measured at synoptic observing stations and therefore it is limited to build the Typical Meteorological Year Dataset with only in-situ observation. This study attempts to build the Typical Meteorological Year Dataset with satellite derived solar insolation as an alternative and then we evaluate the Typical Meteorological Year Dataset made by using satellite derived solar irradiance at Daejeon ground station. The solar irradiance is underestimated when satellite imagery is employed.

Delineation of Rice Productivity Projected via Integration of a Crop Model with Geostationary Satellite Imagery in North Korea

  • Ng, Chi Tim;Ko, Jonghan;Yeom, Jong-min;Jeong, Seungtaek;Jeong, Gwanyong;Choi, Myungin
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.57-81
    • /
    • 2019
  • Satellite images can be integrated into a crop model to strengthen the advantages of each technique for crop monitoring and to compensate for weaknesses of each other, which can be systematically applied for monitoring inaccessible croplands. The objective of this study was to outline the productivity of paddy rice based on simulation of the yield of all paddy fields in North Korea, using a grid crop model combined with optical satellite imagery. The grid GRAMI-rice model was used to simulate paddy rice yields for inaccessible North Korea based on the bidirectional reflectance distribution function-adjusted vegetation indices (VIs) and the solar insolation. VIs and solar insolation for the model simulation were obtained from the Geostationary Ocean Color Imager (GOCI) and the Meteorological Imager (MI) sensors of the Communication Ocean and Meteorological Satellite (COMS). Reanalysis data of air temperature were achieved from the Korea Local Analysis and Prediction System (KLAPS). Study results showed that the yields of paddy rice were reproduced with a statistically significant range of accuracy. The regional characteristics of crops for all of the sites in North Korea were successfully defined into four clusters through a spatial analysis using the K-means clustering approach. The current study has demonstrated the potential effectiveness of characterization of crop productivity based on incorporation of a crop model with satellite images, which is a proven consistent technique for monitoring of crop productivity in inaccessible regions.

Compensation for The Solar Radiation Effect of Radiosonde's Temperature Sensor Using Solar Panel (솔라패널을 이용한 라디오존데 온도센서의 일사보정)

  • Park, Myeong-Seok;Lee, Jin-Wook;Jeung, Se-Jin;Jang, Jea-Won
    • Atmosphere
    • /
    • v.29 no.3
    • /
    • pp.283-294
    • /
    • 2019
  • For the upper air observations, a temperature measurement using radiosonde is a common method, and the compensation of solar radiation effects in the radiosonde temperature sensor is an important factor. In this paper, we present various experiments and compensation methods of the radiosonde temperature sensor to overcome the errors caused by the movement of the radiosonde rotation, etc. The methods and procedures of this study are as follows. First, we used the solar simulator to analyze the temperature variation and solar effect of the temperature sensor in the radiosonde according to the insolation. We also analyzed the temperature variation and solar effect of the temperature sensor according to the incident angle between the solar simulator and radiosonde. Second, we measured and analyzed solar radiation absorbed by solar cells attached to radiosonde. Third, we present combined compensate solution of the first and the second experiment results, to overcome errors caused by insolation effects in the radiosonde temperature sensors. Fourth, we compared that the reference temperature in similar environment with the upper air conditions, to verify the new radiated compensation performance of the radiosonde temperature sensor. Finally, the radiosonde fabricated in this study was raised to the atmosphere, and the laser correction algorithm proposed through experiments was reviewed. As a result of the radiosonde SRS-10 produced in this study, the temperature deviation from Vaisala RS92 was $0.057^{\circ}C$ in nighttime observation, $0.17^{\circ}C$ in daytime observation, It is expected that the GRUAN under WMO will be able to obtain a high test rating of 5.0.

Model for Maximum Power Point Tracking Using Artificial Neural Network and Fuzzy (인공 신경망과 퍼지를 이용한 최대 전력점 추적을 위한 모델)

  • Kim, Tae-Oh;Ha, Eun-Gyu;Kim, Chang-Bok
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.9
    • /
    • pp.19-30
    • /
    • 2019
  • Photovoltaic power generation requires MPPT algorithm to track stable and efficient maximum power output power point according to external changes such as solar radiation and temperature. This study implemented a model that could track MPP more quickly than original MPPT algorithm using artificial neural network. The proposed model finds the current and voltage of MPP using the original MPPT algorithm for various combinations of insolation and temperature for training data of artificial neural networks. The acquired MPP data was learned using the input node as insolation and temperature and the output node as the current and voltage. The Experiment results show tracking time of the original algorithms P&O, InC and Fuzzy were respectively 0.428t, 0.49t and 0.4076t for the 0t~0.3t range, and MPP tracking time of the proposed model was 0.32511t and it is 0.1t faster than the original algorithms.

Prediction of module temperature and photovoltaic electricity generation by the data of Korea Meteorological Administration (데이터를 활용한 태양광 발전 시스템 모듈온도 및 발전량 예측)

  • Kim, Yong-min;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.17 no.4
    • /
    • pp.41-52
    • /
    • 2021
  • In this study, the PV output and module temperature values were predicted using the Meteorological Agency data and compared with actual data, weather, solar radiation, ambient temperature, and wind speed. The forecast accuracy by weather was the lowest in the data on a clear day, which had the most data of the day when it was snowing or the sun was hit at dawn. The predicted accuracy of the module temperature and the amount of power generation according to the amount of insolation decreased as the amount of insolation increased, and the predicted accuracy according to the ambient temperature decreased as the module temperature increased as the ambient temperature increased and the amount of power generated lowered the ambient temperature. As for wind speed, the predicted accuracy decreased as the wind speed increased for both module temperature and power generation, but it was difficult to define the correlation because wind speed was insignificant than the influence of other weather conditions.