Browse > Article
http://dx.doi.org/10.7780/kjrs.2019.35.1.5

Delineation of Rice Productivity Projected via Integration of a Crop Model with Geostationary Satellite Imagery in North Korea  

Ng, Chi Tim (Department of Statistics, Chonnam National University)
Ko, Jonghan (Applied Plant Science, Chonnam National University)
Yeom, Jong-min (Satellite Operation & Application Center, Korea Aerospace Research Institute)
Jeong, Seungtaek (Department of Statistics, Chonnam National University)
Jeong, Gwanyong (Department of Geography, Chonnam National University)
Choi, Myungin (InSpace Co., Ltd.)
Publication Information
Korean Journal of Remote Sensing / v.35, no.1, 2019 , pp. 57-81 More about this Journal
Abstract
Satellite images can be integrated into a crop model to strengthen the advantages of each technique for crop monitoring and to compensate for weaknesses of each other, which can be systematically applied for monitoring inaccessible croplands. The objective of this study was to outline the productivity of paddy rice based on simulation of the yield of all paddy fields in North Korea, using a grid crop model combined with optical satellite imagery. The grid GRAMI-rice model was used to simulate paddy rice yields for inaccessible North Korea based on the bidirectional reflectance distribution function-adjusted vegetation indices (VIs) and the solar insolation. VIs and solar insolation for the model simulation were obtained from the Geostationary Ocean Color Imager (GOCI) and the Meteorological Imager (MI) sensors of the Communication Ocean and Meteorological Satellite (COMS). Reanalysis data of air temperature were achieved from the Korea Local Analysis and Prediction System (KLAPS). Study results showed that the yields of paddy rice were reproduced with a statistically significant range of accuracy. The regional characteristics of crops for all of the sites in North Korea were successfully defined into four clusters through a spatial analysis using the K-means clustering approach. The current study has demonstrated the potential effectiveness of characterization of crop productivity based on incorporation of a crop model with satellite images, which is a proven consistent technique for monitoring of crop productivity in inaccessible regions.
Keywords
cluster analysis; crop model; North Korea; paddy rice; remote sensing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhang, H., Q. Li, J. Liu, J. Shang, X. Du, L. Zhao, N. Wang, and T. Dong, 2017. Crop classification and acreage estimation in North Korea using phenology features, GIScience & Remote Sensing, 54(3): 381-406.   DOI
2 Zhao, W., M. Tamura, and H. Takahashi, 2000. Atmospheric and spectral corrections for estimating surface albedo from satellite data using 6S code, Remote Sensing of Environment, 76(2): 202-212.   DOI
3 Zhao, Y., S. Chen, and S. Shen, 2013. Assimilating remote sensing information with crop model using Ensemble Kalman Filter for improving LAI monitoring and yield estimation, Ecological Modelling, 270: 30-42.   DOI
4 Schaaf, C. B., J. Liu, F. Gao, and A. H. Strahler, 2011. MODIS albedo and reflectance anisotropy products from Aqua and Terra, In: Ramachandran, B., Justice, C., Abrams, M. (Ed.), Land Remote Sensing and Global Environmental Change: NASA's Earth Observing System and the Science of ASTER and MODIS, Remote Sensing and Digital Image Processing Series, Springer-Verlag, Berlin, p. 873.
5 Choi, J.-K., Y. J. Park, J. H. Ahn, H.-S. Lim, J. Eom, and J.-H. Ryu, 2012. GOCI, the world's first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity, Journal of Geophysical Research: Oceans, 117: 1-10.
6 CIA, 2017. The world factbook, Central Intelligence Agency, Washington, D.C., USA.
7 Conrad, O., B. Bechtel, M. Bock, H. Dietrich, E. Fischer, L. Gerlitz, J. Wehberg, V. Wichmann, and J. Bohner, 2015. System for automated geoscientific analyses (SAGA) v. 2.1.4, Geoscientific Model Development, 8(7): 1991-2007.   DOI
8 Doraiswamy, P. C., J. L. Hatfield, T. J. Jackson, B. Akhmedov, J. Prueger, and A. Stern, 2004. Crop condition and yield simulations using Landsat and MODIS, Remote Sensing of Environment, 92(4): 548-559.   DOI
9 Doraiswamy, P. C., T. R. Sinclair, S. Hollinger, B. Akhmedov, A. Stern, and J. Prueger, 2005. Application of MODIS derived parameters for regional crop yield assessment, Remote Sensing of Environment, 97(2): 192-202.   DOI
10 FAO, 2015. The Democratic People's Republic of Korea: Outlook for food supply and demand in 2014/15, Food and Agriculture Organizations of the United Nations, Rome, Italy.
11 FAO, 2011. FAO/WFP crop and food security assessment mission to the democratic people's republic of Korea, Food and Agriculture Organizations of the United Nations, Rome, Italy.
12 Frohlich, C. and R. W. Brusa, 1981. Solar radiation and its variation in time, Solar Physics, 74(1): 209-215.   DOI
13 Kim, H. Y., J. Ko, S. Kang, and J. Tenhunen, 2013. Impacts of climate change on paddy rice yield in a temperate climate, Global Change Biology, 19(2): 548-562.   DOI
14 Ju, J., D. P. Roy, Y. Shuai, and C. Schaaf, 2010. Development of an approach for generation of temporally complete daily nadir MODIS reflectance time series, Remote Sensing of Environment, 114(1): 1-20.   DOI
15 Kawai, Y. and H. Kawamura, 2005. Validation and Improvement of Satellite-Derived Surface Solar Radiation over the Northwestern Pacific Ocean, Journal of Oceanography, 61(1): 79-89.   DOI
16 Kawamura, H., S. Tanahashi, and T. Takahashi, 1998. Estimation of insolation over the Pacific Ocean off the Sanriku coast, Journal of Oceanography, 54(5): 457-464.   DOI
17 Kim, J., J. M. Yoon, M. H. Ahn, B. J. Sohn, and H. S. Lim, 2008. Retrieving aerosol optical depth using visible and mid-IR channels from geostationary satellite MTSAT-1R, International Journal of Remote Sensing, 29(21): 6181-6192.   DOI
18 Kim, M., J. Ko, S. Jeong, J.-M. Yeom, and H.-O. Kim, 2017. Monitoring canopy growth and grain yield of paddy rice in South Korea by using the GRAMI model and high spatial resolution imagery, GIScience & Remote Sensing, 54(4): 534-551.   DOI
19 Kim, Y., O. Park, and S. Hwang, 2002. Realtime operation of the Korea Local Analysis and prediction system at METRI, Asia-Pacific Journal of Atmospheric Sciences, 38(1): 1-10.
20 Kizu, S., 1995. A Study on Thermal Response of Ocean Surface Layer to Solar Radiation Using Satellite Sensing, Tohoku University, Sendai, Japan, p. 100.
21 Ko, J., L. R. Ahuja, S. Saseendran, T. R. Green, L. Ma, D. C. Nielsen, and C. L. Walthall, 2012. Climate change impacts on dryland cropping systems in the Central Great Plains, USA, Climatic Change, 111(2): 445-472.   DOI
22 Lucht, W., C. B. Schaaf, and A. H. Strahler, 2000. An algorithm for the retrieval of albedo from space using semiempirical BRDF models, IEEE Transactions on Geoscience and Remote Sensing, 38(2): 977-998.   DOI
23 Frouin, R., D. W. Lingner, C. Gautier, K. S. Baker, and R. C. Smith, 1989. A simple analytical formula to compute clear sky total and photosynthetically available solar irradiance at the ocean surface, Journal of Geophysical Research: Oceans, 94(C7): 9731-9742.   DOI
24 Ko, J., S. Jeong, J. Yeom, H. Kim, J.-O. Ban, and H.-Y. Kim, 2015. Simulation and mapping of rice growth and yield based on remote sensing, Journal of Applied Remote Sensing, 9(1): 096067.   DOI
25 Kuhn, M. and K. Johnson, 2013. Applied predictive modeling, Springer, New York, NY, USA.
26 Lacis, A. A. and J. Hansen, 1974. A Parameterization for the Absorption of Solar Radiation in the Earth's Atmosphere, Journal of the Atmospheric Sciences, 31(1): 118-133.   DOI
27 Lee, S.-J., J. Cho, S. Hong, K.-J. Ha, H. Lee, and Y.-W. Lee, 2016. On the relationships between satellite-based drought index and gross primary production in the North Korean croplands, 2000-2012, Remote Sensing Letters, 7(8): 790-799.   DOI
28 Maas, S.J., 1992. GRAMI: a crop model growth model that can use remotely sensed information, USDA-ARS, Washington, D.C., USA, p. 78.
29 Maas, S.J., 1993. Parameterized model of gramineous crop growth: 2. within-season simulation calibration, Agronomy Journal, 85(2): 354-358.   DOI
30 McGinley, J. A., S. C. Albers, and P. A. Stamus, 1991. Validation of a Composite Convective Index as Defined by a Real-Time Local Analysis System, Weather and Forecasting, 6(3): 337-356.   DOI
31 Nash, J. E. and J. V. Sutcliffe, 1970. River flow forecasting through conceptual models part I - A discussion of principles, Journal of Hydrology, 10(3): 282-290.   DOI
32 Peel, M. C., B. L. Finlayson, and T. A. McMahon, 2007. Updated world map of the Koppen-Geiger climate classification, Hydrology and Earth Systtems Sciendes, 11: 1633-1644.   DOI
33 NIER, 2014. Korean climate change assessment report 2014: Impact of climate change and adaptation, National Institute of Environmental Research (NIER), Incheon, South Korea.
34 Nunez, M., 1993. The development of a satellite-based insolation model for the tropical western Pacific Ocean, International Journal of Climatology, 13(6): 607-627.   DOI
35 Otkin, J. A., M. C. Anderson, J. R. Mecikalski, and G. R. Diak, 2005. Validation of GOES-Based Insolation Estimates Using Data from the U.S. Climate Reference Network, Journal of Hydrometeorology, 6(4): 460-475.   DOI
36 Padilla, F. L. M., S. J. Maas, M. P. Gonzalez-Dugo, F. Mansilla, N. Rajan, P. Gavilan, and J. Dominguez, 2012. Monitoring regional wheat yield in Southern Spain using the GRAMI model and satellite imagery, Field Crops Research, 130: 145-154.   DOI
37 Paltridge, G. W. and C. M. R. Platt, 1976. Radiative processes in meteorology and climatology, Elsevier Scientific Publishing Company, New York, NY, USA.
38 Poggio, L., A. Gimona, and I. Brown, 2012. Spatio-temporal MODIS EVI gap filling under cloud cover: An example in Scotland, ISPRS Journal of Photogrammetry and Remote Sensing, 72: 56-72.   DOI
39 Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, New York, NY, USA.
40 Qian, W., H.-S. Kang, and D.-K. Lee, 2002. Distribution of seasonal rainfall in the East Asian monsoon region, Theoretical and Applied Climatology, 73(3): 151-168.   DOI
41 Robinson, G., 1962. Absorption of solar radiation by atmospheric aerosol, as revealed by measurements at the ground, Archiv fur Meteorologie, Geophysik und Bioklimatologie, Serie B, 12(1): 19-40.   DOI
42 Roujean, J.-L., M. Leroy, and P.-Y. Deschamps, 1992. A bidirectional reflectance model of the Earth's surface for the correction of remote sensing data, Journal of Geophysical Research: Atmospheres, 97(D18): 20455-20468.   DOI
43 Funk, C. and M. E. Budde, 2009. Phenologically-tuned MODIS NDVI-based production anomaly estimates for Zimbabwe, Remote Sensing of Environment, 113(1): 115-125.   DOI
44 Gao, F., J. T. Morisette, R. E. Wolfe, G. Ederer, J. Pedelty, E. Masuoka, R. Myneni, B. Tan, and J. Nightingale, 2008. An Algorithm to Produce Temporally and Spatially Continuous MODIS-LAI Time Series, IEEE Geoscience and Remote Sensing Letters, 5(1): 60-64.   DOI
45 Guyon, I. and A. Elisseeff, 2003. An introduction to variable and feature selection, Journal of Machine Learning Research, 3(03): 1157-1182.
46 Roerink, G. J., M. Menenti, and W. Verhoef, 2000. Reconstructing cloudfree NDVI composites using Fourier analysis of time series, International Journal of Remote Sensing, 21(9): 1911-1917.   DOI
47 Ross, J., 1981. The radiation regime and architecture of plant stands, Artech House, Norwell, MA, USA.
48 Schaaf, C. B., F. Gao, A. H. Strahler, W. Lucht, X. Li, T. Tsang, N. C. Strugnell, X. Zhang, Y. Jin, J.-P. Muller, P. Lewis, M. Barnsley, P. Hobson, M. Disney, G. Roberts, M. Dunderdale, C. Doll, R. P. d'Entremont, B. Hu, S. Liang, J. L. Privette, and D. Roy, 2002. First operational BRDF, albedo nadir reflectance products from MODIS, Remote Sensing of Environment, 83(1): 135-148.   DOI
49 Schafer, S., 2015. Climate Change Adaptation in South Korea: Environmental Politics in the Agricultural Sector, University of Bayreuth, Bayreuth, Germany.
50 Shuai, Y., C. Schaaf, X. Zhang, A. Strahler, D. Roy, J. Morisette, Z. Wang, J. Nightingale, J. Nickeson, A. D. Richardson, D. Xie, J. Wang, X. Li, K. Strabala, and J. E. Davies, 2013. Daily MODIS 500 m reflectance anisotropy direct broadcast (DB) products for monitoring vegetation phenology dynamics, International Journal of Remote Sensing, 34(16): 5997-6016.   DOI
51 Jeong, S., J. Ko, and J.-M. Yeom, 2018. Nationwide Projection of Rice Yield Using a Crop Model Integrated with Geostationary Satellite Imagery: A Case Study in South Korea, Remote Sensing, 10(10): 1665.   DOI
52 Hilker, T., N. C. Coops, M. A. Wulder, T. A. Black, and R. D. Guy, 2008. The use of remote sensing in light use efficiency based models of gross primary production: A review of current status and future requirements, Science of the Total Environment, 404(2): 411-423.   DOI
53 Huang, J., F. Sedano, Y. Huang, H. Ma, X. Li, S. Liang, L. Tian, X. Zhang, J. Fan, and W. Wu, 2016. Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation, Agricultural and Forest Meteorology, 216: 188-202.   DOI
54 Ireson, R., 2006. Food security in North Korea: Designing realistic possibilities, Stanford University: The Walter H. Shorenstein Asia-Pacific Research Center, CA, USA.
55 Jones, H. G. and R. A. Vaughan, 2010. Remote sensing of vegetation: principles, techniques, and applications, Oxford university press, New York, NY, USA.
56 Jonsson, P. and L. Eklundh, 2002. Seasonality extraction by function fitting to time-series of satellite sensor data, IEEE Transactions on Geoscience and Remote Sensing, 40(8): 1824-1832.   DOI
57 Albers, S. C., J. A. McGinley, D. L. Birkenheuer, and J. R. Smart, 1996. The Local Analysis and Prediction System (LAPS): Analyses of Clouds, Precipitation, and Temperature, Weather and Forecasting, 11(3): 273-287.   DOI
58 Sowers, J., A. Vengosh, and E. Weinthal, 2011. Climate change, water resources, and the politics of adaptation in the Middle East and North Africa, Climatic Change, 104(3): 599-627.   DOI
59 Tanahashi, S., H. Kawamura, T. Matsuura, T. Takahashi, and H. Yusa, 2001. A system to distribute satellite incident solar radiation in real-time, Remote Sensing of Environment, 75(3): 412-422.   DOI
60 Albers, D.W., 1999. Cotton plant development and plant mapping, Agricultural publication G4268, University of Missouri Extension Service, Columnbia, MO, USA.
61 Atkinson, P. M., C. Jeganathan, J. Dash, and C. Atzberger, 2012. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology, Remote Sensing of Environment, 123: 400-417.   DOI
62 Belgiu, M. and L. Dragut, 2016. Random forest in remote sensing: A review of applications and future directions, ISPRS Journal of Photogrammetry and Remote Sensing, 114: 24-31.   DOI
63 Bohner, J., R. Koethe, O. Conrad, J. Gross, A. Ringeler, and T. Selige, 2002. Soil regionalisation by means of terrain analysis and process parameterisation, In: Micheli, E., Nachtergaele, F., Montanarella, L. (Ed.), Soil Classification 2001, The European Soil Bureau, Joint Research Centre, Luxembourg, pp. 213-222.
64 Breiman, L., 2001. Random forests, Machine Learning, 45(1): 5-32.   DOI
65 Yeom, J.-M., S. Jeong, G. Jeong, C. T. Ng, R. C. Deo, and J. Ko, 2018. Monitoring paddy productivity in North Korea employing geostationary satellite images integrated with GRAMI-rice model, Scientific reports, 8(1): 16121.   DOI
66 Wang, M., 1999. A Sensitivity Study of the SeaWiFS Atmospheric Correction Algorithm: Effects of Spectral Band Variations, Remote Sensing of Environment, 67(3): 348-359.   DOI
67 Xiao, X., S. Boles, S. Frolking, C. Li, J. Y. Babu, W. Salas, and B. Moore, 2006. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images, Remote Sensing of Environment, 100(1): 95-113.   DOI
68 Yeom, J.-M., K.-S. Han, and J.-J. Kim, 2012. Evaluation on penetration rate of cloud for incoming solar radiation using geostationary satellite data, Asia-Pacific Journal of Atmospheric Sciences, 48(2): 115-123.   DOI
69 Yeom, J.-M. and H.-O. Kim, 2013. Feasibility of using Geostationary Ocean Colour Imager (GOCI) data for land applications after atmospheric correction and bidirectional reflectance distribution function modelling, International Journal of Remote Sensing, 34(20): 7329-7339.   DOI
70 Yeom, J.-M. and H.-O. Kim, 2015. Comparison of NDVIs from GOCI and MODIS Data towards Improved Assessment of Crop Temporal Dynamics in the Case of Paddy Rice, Remote Sensing, 7(9): 11326.   DOI
71 Zevenbergen, L. W. and C. R. Thorne, 1987. Quantitative analysis of land surface topography, Earth Surface Processes and Landforms, 12(1): 47-56.   DOI
72 Chen, J. M., D. Feng, and C. Mingzhen, 2006. Locally adjusted cubic-spline capping for reconstructing seasonal trajectories of a satellite-derived surface parameter, IEEE Transactions on Geoscience and Remote Sensing, 44(8): 2230-2238.   DOI
73 Yeom, J.-M., J. Ko, and H.-O. Kim, 2015. Application of GOCI-derived vegetation index profiles to estimation of paddy rice yield using the GRAMI rice model, Computers and Electronics in Agriculture, 118: 1-8.   DOI
74 Yeom, J.-M., Y.-K. Seo, D.-S. Kim, and K.-S. Han, 2016. Solar Radiation Received by Slopes Using COMS Imagery, a Physically Based Radiation Model, and GLOBE, Journal of Sensors, 2016: 1-15.