• Title/Summary/Keyword: inquiry-based science teaching

Search Result 197, Processing Time 0.027 seconds

Developmental Study of an Inquiry-Based Professional Development Program for In-Service Secondary Science Teachers (현직 중등과학교사의 과학탐구능력 발달을 위한 프로그램의 개발과 적용 효과에 대한 인식)

  • Park, Kuk-Tae;Park, Hyun-Ju;Kim, Kyung-Mee
    • Journal of The Korean Association For Science Education
    • /
    • v.25 no.4
    • /
    • pp.472-479
    • /
    • 2005
  • The purpose of this study was to develop an inquiry-based professional development program for in-service secondary science teachers and to investigate it's application. The inquiry-based professional development program was reconstructed based on SSCS problem-solving model, which is composed of 4 stages of search, solve, create, and share. The 28 science teachers' understanding of the SSCS program were investigated as implementing the program. As a result of this study, 8 SSCS modules have developed as the science teachers have searched, solved, created, and shared various situated problems. The science teachers found themselves to have positive perception of SSCS program. The SSCS program was effective in changing the learners' teaching/learning attitude and to develop individual scientific thinking. To make the SSCS problem solving successful and more effective, both science teachers' professionalism and pedagogical knowledge for selecting topic as the levels of learner should be considered.

High-School Physics Teachers' Difficulties in Teaching Textbook Physics Inquiries (고등학교 물리 교사들이 교과서 탐구 지도에서 겪는 어려움)

  • Lee, Seyeon;Lee, Bongwoo
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.4
    • /
    • pp.519-526
    • /
    • 2018
  • The purpose of this study is to analyze the Korean high-school physics teachers' difficulties in teaching textbook physics inquiries. For this purpose, 63 high school physics teachers completed a questionnaire. We asked teachers to evaluate the degree of difficulty in teaching textbook physics inquiries. Additionally, we asked physics teachers to select the two most difficult inquiries to teach and to express their reasons for these selections. The main results are as follows: First, the degree of difficulty for all the inquiry is 2.79, indicating a little easy level of difficulty. The two most difficult inquiries are 'Meissner effect experiment' and 'Investigation of diode characteristics using $Cu_2O$ plate and ZnO powder.' Second, the difficulty reasons to teach physics inquiry was presented in the order of 'environment domain,' 'textbook domain,' 'student domain,' and 'teacher domain.' In particular, the biggest reasons for difficulty for teachers are 'preparation of experimental apparatus' and 'safety.' There are many opinions related to 'problem of the experiment itself' in 'textbook domain' and 'lack of ability to manipulate' in 'student domain.' Based on the results of this study, we added a discussion to activate the high school physics textbook inquiries.

The Effects of Scientific Inquiry Class Using Data Measured with Digital Inquiry Tools on Elementary School Students' Competencies (디지털 탐구도구로 측정한 데이터를 활용하는 과학 탐구 수업이 초등학생의 역량에 미치는 영향)

  • Jeong, Eunju;Son, Jeongwoo
    • Journal of Science Education
    • /
    • v.44 no.2
    • /
    • pp.205-213
    • /
    • 2020
  • The purpose of this study is to investigate the effects of elementary school students' knowledge and information processing competence and collaborative problem-solving ability in scientific inquiry class using data measured with digital inquiry tools. To this end, three classes of 5th grade elementary schools in S-city, Gyeongnam were selected as experimental groups and three classes as control groups. The control group conducted traditional lecture-style classes, and the experimental group conducted scientific inquiry classes using scientific data. The following results were obtained through questionnaires after class. First, science inquiry classes using scientific data helped elementary school students improve their knowledge and information processing competence. Second, scientific inquiry classes using scientific data improved elementary school students' cooperative problem-solving ability. From the above results, it was found that scientific inquiry classes using scientific data are needed to improve the knowledge information processing competence and cooperative problem solving ability of elementary school students. Based on this research, it is necessary to study a specific teaching and learning environment that can activate scientific inquiry class using data measured with digital inquiry tools in the future.

Science Teachers' Actual and Preferred Cases of Assessment in 'Scientific Inquiries in History' of Science Inquiry Experiment (과학탐구실험의 '역사 속의 과학 탐구'에서 과학교사의 평가 실태와 평가 지향 조사)

  • Minhwan, Kim;Dahae, Park;Taehee, Noh
    • Journal of The Korean Association For Science Education
    • /
    • v.42 no.6
    • /
    • pp.597-610
    • /
    • 2022
  • In this study, we investigated actual cases of assessment science teachers conducted and the cases they preferred in a typical situation based on the curriculum in the context of 'Scientific Inquiries in the History' of Scientific Inquiry Experiment. A questionnaire composed of descriptive questions was developed and a survey was conducted with 70 science teachers with experience in teaching 'Scientific Inquiries in History'. Interviews were conducted with eight of them. The assessment cases were analyzed in terms of the assessment areas and assessment methods, and the results were compared. The analyses of the results revealed that 'scientific inquiry ability' accounted for the highest ratio of the assessment areas in the actual cases of assessment. There were few cases that assessed the core concepts presented in the curriculum, 'the nature of science' and 'scientists' inquiry methods'. The assessment methods were greatly biased toward the report method and various assessment methods were not used. In preferred cases of assessment, the ratio of cases that assessed the core concept increased slightly, however the frequencies remained at a low. As for the assessment methods in preferred cases of assessment, the measurement methods decreased, the performance methods increased, and the informal methods which were not shown in the actual cases appeared. However various assessment methods were still not used. The causes of the survey results were analyzed based on the opinions of the teachers who participated in the interviews. Based on above results, plans to actively conduct NOS assessments in Scientific Inquiry Experiment are discussed.

The Effects of Argument-Based Inquiry Using the Science Writing Heuristic (SWH) Approach on Argument Structure in Students' Writing (학생들의 글쓰기에 나타난 논의구조에 미치는 탐구적 과학 글쓰기 활동의 효과 분석)

  • Jang, Kyung-Hwa;Nam, Jeonghee;Choi, Aeran
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.7
    • /
    • pp.1099-1108
    • /
    • 2012
  • The purpose of this study was to examine the effects of argument structure on students' writing in implementation of argument-based inquiry using the Science Writing Heuristic (SWH) approach. Participants of this study were 108 8th grade students (three classes). Two classes (68 students) were assigned to an experimental group, and the other class (35 students) was assigned to a comparative group. The experimental group was taught argument-based inquiry using the Science Writing Heuristic (SWH) approach, while the comparative group was taught with the traditional teaching strategy. After implementing this program, the two groups were asked to write summaries using structured argumentation in their writing. The result of this study showed that the experimental group used better argument structure and multimodal representation such as pictures, graphs and examples in evidence than the comparative group. The quality of evidence used in the students' writing was different between two groups. Students of the comparative group only listed fragments of science concepts for evidence to support their claims, but students of the experimental group explained science concepts by giving specific examples. The findings show that argument-based inquiry using the SWH approach was effective on argument structure in students' writing.

Searching for Effective Strategies on Teaching Open-Inquiry -Based on Cases of a Science High School Carrying Out KYPT Problem Solving Activities- (개방형 과학 탐구를 위한 효과적인 지도 전략의 탐색 - 과학고등학교의 KYPT문제 해결 사례를 중심으로-)

  • Kim, Hyojoon;Song, Jinwoong
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.10
    • /
    • pp.1489-1501
    • /
    • 2012
  • The purpose of this study was to search for effective strategies on teaching open-inquiry by comparing students' and teachers' recognition of its difficulties and helpful strategies. This study focused on the cases of science high school students and their teachers, who carried out open-inquiry to participate in KYPT. This research was conducted through participant observation, questionnaires, and interviews. The research findings were as follows: students stated that planning and doing experiments were the most difficult parts, whereas teachers viewed that their students had difficulties in analyzing data and making a conclusion. With respect to the effective strategy, students stated that they gained many ideas from peer discussions although they have had to carry out their individual tasks. On the contrary, teachers thought that reference materials and the discussions with teachers were most helpful. There were clear differences between students' and their teachers' recognition toward open-inquiry and the gap needs to be closed. Consequently, it would be useful to guide students to form teams and to spend more time in peer discussions especially when doing experiments and to encourage teachers to understand students' actual difficulties and needs.

Teaching Orientations and Classroom Practices of Science Teachers Participating in Workshops for Constructivistic Science Teaching (구성주의적 수업을 위한 워크숍에 참여한 중등 과학 교사의 교수 지향과 수업 실행)

  • Jeong, Deuk-Sil;Lee, Sun-Kyung;Oh, Phil-Seok;Maeng, Seung-Ho;Chung, Ae-Ran;Kim, Chan-Jong
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.5
    • /
    • pp.432-446
    • /
    • 2007
  • The purpose of the study is to explore the science teaching orientations of secondary science teachers, and how they influence the planning and execution of reform-based lessons. Professional development workshop for constructivist teaching consisted of three different phases; five lectures, small group discussion, and preparing lesson plans. Four teachers who participated also executed their lesson plans in their own classroom. All workshops were videotape recorded. Classroom observations and interviews were conducted and recorded. Instructional materials were also collected for each science class. All data recorded were transcribed and analyzed. Based on the data collected from multiple sources, we identified each teacher's teaching orientations, and through this lens, we also tried to understand their classroom practices. We expected teacher-participants to implement constructivist science teaching. However, the differences among teachers in the course of actual planning and implementing activities for constructivist science was wider than we expected and even some teachers were unsuccessful. Teaching orientations can act as a filter for teachers when they decide whether to accept and apply new knowledge about teaching and learning to actual lessons or not. Even if a teacher plans a guided-inquiry lesson, her/his didactic teaching orientation could be revealed in actual classroom, and lead her/his class to other direction which is quite different from her/his original intention. Although the teachers participated in the same workshops in our study, they planned and executed differently and their own teaching orientations contribute substantially to their practice. Understanding the role of science teaching orientations could be an important step in addressing issues of diverse difficulties in supporting reform efforts in science.

Research on Characteristics of Teacher Professionalism by the Type of Science Pedagogical Content Knowledge (과학과 교과교육학 지식 유형별 교사 전문성의 특징 연구)

  • Kwak, Young-Sun
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.6
    • /
    • pp.592-602
    • /
    • 2008
  • The purpose of this research is to explore types of pedagogical content knowledge (PCK, hereafter) for effective science teaching. In this research, we explored three science teachers' PCK on light, who were effective in teaching the topic with particular students. The data analysis consisted of identifying the three teachers' unique PCK and ways to improve each teaching episode through the teacher meetings. These analyses, which consisted of verbal exchanges among the participants, were identified on the basis of our understanding. Using grounded theory methods, the types of science PCK drawn from this research are: (1) teaching through curriculum reconstruction, (2) teaching to help students build their own explanation models about surrounding nature, (3) teaching for learning the social language of science, (4) teaching to motivate students' learning needs based on relevance of science to students, (5) teaching through lowering students' learning demand by providing scaffolding, (6) teaching based on the teacher's understanding of students, (7) teaching through inquiry with argumentation, (8) teaching through reification of abstract science concepts, and (9) teaching none marginalized science. Common features of science teachers with quality PCK and their professionalism in teaching are discussed.

Korean Teachers' Conceptions of Models and Modeling in Science and Science Teaching (과학 탐구와 과학 교수학습에서의 모델과 모델링에 대한 교사들의 인식)

  • Kang, Nam-Hwa
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.1
    • /
    • pp.143-154
    • /
    • 2017
  • Science inquiry has long been emphasized in Korean science education. Scientific modeling is one of key practices in science inquiry with a potential to provide students with opportunities to develop their own explanations and knowledge thereafter. The purpose of this study is to investigate teacher's understanding of models in science and science teaching. A professional development program on Models (PDM) was developed and refined through three times of implementation while teachers' conceptions of models and modeling were examined. A total of 29 elementary and secondary teachers participated in this study. A survey based on model use of scientists in the history of science was developed and used to collect data and audio recordings of discussions among teachers and artifacts produced by the teachers during PDM were also collected. Three ways of ontological and two ways of epistemological understanding of models and modeling were found in teachers' ideas. After PDM, a quarter of the teachers changed their ontological understanding whereas very few changed their epistemological understanding. In contrast, more than two thirds of the teachers deepened and extended their ideas about using models and modeling in teaching. There were no clear relationships between teachers' understanding of models and ways and ideas about using models in science teaching. However, teachers' perceptions of school conditions were found to mediate their intention to use models in science teaching. The findings indicate possible approaches to professional development program content design and further research.

Development of Teaching Strategy with Use of 'Pedagogical Content Knowledge' in the In-service Teacher Training for the Gifted Education and Its Application (과학 영재교육 교사 연수에서 '교수내용지식'을 활용한 교수 전략의 개발과 적용)

  • Choi, Won-Ho;Son, Jeong-Woo;Lee, Bong-Woo;Lee, In-Ho;Choi, Jung-Hoon
    • Journal of Korean Elementary Science Education
    • /
    • v.28 no.1
    • /
    • pp.9-23
    • /
    • 2009
  • This research defined professionality of science teacher from the perspective of PCK. An teaching strategy in the in-service teacher training for the gifted education was proposed based on the definition and implemented at an in-service teacher training program for the gifted education in order to explore about the teaching strategy and suggest practical implications that could improve the program. The in-service teacher training teaching strategy proposed in this research consists of three components: 'crafting activity materials', 'conducting inquiry-based experiment', 'developing rubric for identification of giftedness'. The survey carried out for the participants of the teacher training program showed that teachers perceived the importance of the need for the rubric for gifted identification, developing activity materials for the gifted education in science, and developing the rubric of gifted identification as properties for in-service teacher training programs fur the gifted education. However, the insufficiency of time and opportunities for being fully engaged in such a program made teachers feel lack of self-confidence in developing activity materials for the gifted education in science and rubric for gifted identification. Therefore, teacher training programs reflecting real features of the gifted education should be constantly developed and provided to enhance the effectiveness of in-service teacher training programs.

  • PDF