• Title/Summary/Keyword: input motion

Search Result 1,221, Processing Time 0.029 seconds

Motion Control of Inchworm using Input Shaping and Genetic Algorithm (입력 성형과 유전 알고리즘에 의한 자벌레 운동제어)

  • Kim, In-Soo;Kim, Ki-Bum;Park, Seung-Min
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.3
    • /
    • pp.313-319
    • /
    • 2017
  • This study presents a genetic algorithm (GA) to design a PID controller systematically for an inchworm operated by piezoelectric actuators. The performance index considering overshoot and settling time is adopted to search an optimal PID gain using GA. The piezoelectric actuator shows nonlinear characteristics including hysteresis and residual displacement. The PID feedback system combined with an integrator is used to improve the ability of tracking the complex input signals and suppressing the steady state error. The PID controller tuned by GA can track the various motion contours effectively. However, the PID controller shows an improper residual vibration under the application of high-frequency square input. The input shaper combined with the feedback system can overcome this limitation of the PID controller.

Evaluation of seismic energy demand and its application on design of buckling-restrained braced frames

  • Choi, Hyunhoon;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • v.31 no.1
    • /
    • pp.93-112
    • /
    • 2009
  • In this study seismic analyses of steel structures were carried out to examine the effect of ground motion characteristics and structural properties on energy demands using 100 earthquake ground motions recorded in different soil conditions, and the results were compared with those of previous works. Analysis results show that ductility ratios and the site conditions have significant influence on input energy. The ratio of hysteretic to input energy is considerably influenced by the ductility ratio and the strong motion duration. It is also observed that as the predominant periods of the input energy spectra are significantly larger than those of acceleration response spectra used in the strength design, the strength demand on a structure designed based on energy should be checked especially in short period structures. For that reason framed structures with buckling-restrained-braces (BRBs) were designed in such a way that all the input energy was dissipated by the hysteretic energy of the BRBs, and the results were compared with those designed by conventional strength-based design procedure.

Dynamic Analysis and Driving Input Shaping of Inchworm (이송자벌레의 동적 해석 및 구동 입력신호 설계)

  • Kim, In-Soo;Kim, Yeung-Shik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.7
    • /
    • pp.756-763
    • /
    • 2008
  • This paper presents an inchworm with three piezoelectric actuators. The dynamic stiffness of the inchworm is generally low compared to its driving condition, so mechanical vibration may degenerate the motion accuracy of the inchworm. The dynamic model of inchworm is identified by curve fitting technique based on the experimental frequency response function. For the precision motion control and low residual vibration of inchworm, driving input signal is designed by using cycloid step input and LQG control technique. Experimental result shows that proposed input shaping method is applicable effectively to the inchworm.

Experiment of a 3D Motion Input Device (3차원 운동 입력장치 구현)

  • Lee, Woo-Won;Choi, Myoung-Hwan
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.173-178
    • /
    • 1999
  • In many areas of technology there are machines and systems controllable in up to six degrees of freedom. Helicopters and underwater vehicles, industrial robots are among the first representatives of this category. They need six degrees of freedom in order to move and orient within their workspace. An even broader and more explosively growing area is 3D computer graphics and virtual environment. In this work, functions of 3D input device are described and two types of commercial 3D input device are presented. Then, a preliminary experiment of a low cost 6 axis force/moment sensor is presented that can also be sued as a 3D input device. A low cost force/moment sensor and its application in robot teaching experiment is described. It computes the direction of 3 components of the force and 3 components of the moment applied by human holding the sensor by hand. The concept is shown by an experiment where the tool position and orientation of a robot in 3 dimensional space is controlled by the proposed sensor.

  • PDF

Seismic Energy Demand of Structures Depending on Ground Motion Characteristics and Structural Properties (지반 운동과 구조물 특성에 따른 구조물의 에너지 요구량)

  • Choi, Hyun-Hoon;Kim, Jin-Koo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.3 s.43
    • /
    • pp.59-68
    • /
    • 2005
  • The energy-based seismic design method Is more rational in comparison with current seismic design code in that it can directly account for the effects of cumulative damage by earthquake and hysteretic behavior of the structure. However there are research results that don't reach a consensus depending on the ground motion characteristic and structural properties. For that reason in this study the influences of ground motion characteristics and structural properties on energy demands were evaluated using 100 earthquake ground motions recorded in different soil conditions, and the results obtained were compared with those of previous works. Results show that ductility ratios and sue conditions have significant influence on input energy. The results show that the ratio of hysteretic to input energy is considerably influenced by the ductility ratio, damping ratio, and strong motion duration, while the effect of site condition is insignificant.

Temporal Transfer of Locomotion Style

  • Kim, Yejin;Kim, Myunggyu;Neff, Michael
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.406-416
    • /
    • 2015
  • Timing plays a key role in expressing the qualitative aspects of a character's motion; that is, conveying emotional state, personality, and character role, all potentially without changing spatial positions. Temporal editing of locomotion style is particularly difficult for a novice animator since observers are not well attuned to the sense of weight and energy displayed through motion timing; and the interface for adjusting timing is far less intuitive to use than that for adjusting pose. In this paper, we propose an editing system that effectively captures the timing variations in an example locomotion set and utilizes them for style transfer from one motion to another via both global and upper-body timing transfers. The global timing transfer focuses on matching the input motion to the body speed of the selected example motion, while the upper-body timing transfer propagates the sense of movement flow - succession - through the torso and arms. Our transfer process is based on key times detected from the example set and transferring the relative changes of angle rotation in the upper body joints from a timing source to an input target motion. We demonstrate that our approach is practical in an interactive application such that a set of short locomotion cycles can be applied to generate a longer sequence with continuously varied timings.

Bio-mimetic Recognition of Action Sequence using Unsupervised Learning (비지도 학습을 이용한 생체 모방 동작 인지 기반의 동작 순서 인식)

  • Kim, Jin Ok
    • Journal of Internet Computing and Services
    • /
    • v.15 no.4
    • /
    • pp.9-20
    • /
    • 2014
  • Making good predictions about the outcome of one's actions would seem to be essential in the context of social interaction and decision-making. This paper proposes a computational model for learning articulated motion patterns for action recognition, which mimics biological-inspired visual perception processing of human brain. Developed model of cortical architecture for the unsupervised learning of motion sequence, builds upon neurophysiological knowledge about the cortical sites such as IT, MT, STS and specific neuronal representation which contribute to articulated motion perception. Experiments show how the model automatically selects significant motion patterns as well as meaningful static snapshot categories from continuous video input. Such key poses correspond to articulated postures which are utilized in probing the trained network to impose implied motion perception from static views. We also present how sequence selective representations are learned in STS by fusing snapshot and motion input and how learned feedback connections enable making predictions about future input sequence. Network simulations demonstrate the computational capacity of the proposed model for motion recognition.

Seismic Motion Amplification Characteristics at Artificial Reclaimed Land (인공 매립 지반에서의 지진파 증폭 특성)

  • Kim, Yong-Seong;Moon, Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1134-1139
    • /
    • 2005
  • Seismic motion amplification owing to the input motion level at bedrock is one of the important topics to understand various geomaterials behavior. The extremely valuable borehole records at Port Island were obtained during the 1995 Hyogoken Nanbu Earthquake and also before and after the main event. In this study, the seismic motion amplification at the soft reclaimed ground was discussed. Comparison of measured records with numerical simulation results were made with focus on seismic motion amplification characteristics at the soft reclaimed ground.

  • PDF

Implementation of the Hand-motion Recognition based Auxiliary Input Device using Gyro Sensor (자이로센서를 이용한 손 동작 인식형 보조 입력장치 구현)

  • Park, Ki-Hong;Lee, Hyun-Jik;Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.4
    • /
    • pp.503-508
    • /
    • 2009
  • In this paper, we have designed the auxiliary input device which based on hand-motion recognition. It is aimed at some individually specified person such as the disabled, rehabilitation patient, and the aged. The gyro sensor is used to recognize the hand-motion in 3D space, and communication bandwidth for transceiver is also set to the 2.4GHz. Prototype board includes a set of modules; Gyro sensor, RF transmitter/receiver, MCU for signal processing and USB connector etc. Some experiments are conducted so as to verify the prototype, and as a result, mouse-based curser motion as well as program control are well operated just same as the design specification.

  • PDF

Correlation of elastic input energy equivalent velocity spectral values

  • Cheng, Yin;Lucchini, Andrea;Mollaioli, Fabrizio
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.957-976
    • /
    • 2015
  • Recently, two energy-based response parameters, i.e., the absolute and the relative elastic input energy equivalent velocity, have been receiving a lot of research attention. Several studies, in fact, have demonstrated the potential of these intensity measures in the prediction of the seismic structural response. Although some ground motion prediction equations have been developed for these parameters, they only provide marginal distributions without information about the joint occurrence of the spectral values at different periods. In order to build new prediction models for the two equivalent velocities, a large set of ground motion records is used to calculate the correlation coefficients between the response spectral values corresponding to different periods and components of the ground motion. Then, functional forms adopted in models from the literature are calibrated to fit the obtained data. A new functional form is proposed to improve the predictions of the considered models from the literature. The components of the ground motion considered in this study are the two horizontal ones only. Potential uses of the proposed equations in addition to the prediction of the correlation coefficients of the equivalent velocity spectral values are shown, such as the prediction of derived intensity measures and the development of conditional mean spectra.