• 제목/요약/키워드: input energy response history

검색결과 18건 처리시간 0.022초

Computing input energy response of MDOF systems to actual ground motions based on modal contributions

  • Ucar, Taner
    • Earthquakes and Structures
    • /
    • 제18권2호
    • /
    • pp.263-273
    • /
    • 2020
  • The use of energy concepts in seismic analysis and design of structures requires the understanding of the input energy response of multi-degree-of-freedom (MDOF) systems subjected to strong ground motions. For design purposes and non-time consuming analysis, however, it would be beneficial to associate the input energy response of MDOF systems with those of single-degree-of-freedom (SDOF) systems. In this paper, the theoretical formulation of energy input to MDOF systems is developed on the basis that only a particular portion of the total mass distributed among floor levels is effective in the nth-mode response. The input energy response histories of several reinforced concrete frames subjected to a set of eleven horizontal acceleration histories selected from actual recorded events and scaled in time domain are obtained. The contribution of the fundamental mode to the total input energy response of MDOF frames is demonstrated both graphically and numerically. The input energy of the fundamental mode is found to be a good indicator of the total energy input to two-dimensional regular MDOF structures. The numerical results computed by the proposed formulation are verified with relative input energy time histories directly computed from linear time history analysis. Finally, the elastic input energies are compared with those computed from time history analysis of nonlinear MDOF systems.

Distribution of near-fault input energy over the height of RC frame structures and its formulation

  • Taner Ucar
    • Structural Engineering and Mechanics
    • /
    • 제85권1호
    • /
    • pp.55-64
    • /
    • 2023
  • Energy-based seismic design and evaluation methods are promising to be involved in the next generation design codes. Accordingly, determining the distribution of earthquake input energy demand among floor levels is quite imperative in order to develop an energy-based seismic design procedure. In this paper, peak floor input energy demands are achieved from relative input energy response histories of several reinforced concrete (RC) frames. A set of 22 horizontal acceleration histories selected from recorded near-fault earthquakes and scaled in time domain to be compatible with the elastic acceleration design spectra of Turkish Seismic Design Code are used in time history analyses. The distribution of the computed input energy per mass values and the arithmetic means through the height of the considered RC frames are presented as a result. It is found that spatial distribution of input energy per mass is highly affected by the number of stories. Very practical yet consistent formulation of distributing the total input energy to story levels is achieved, as a most important contribution of the study.

An investigation on the maximum earthquake input energy for elastic SDOF systems

  • Merter, Onur
    • Earthquakes and Structures
    • /
    • 제16권4호
    • /
    • pp.487-499
    • /
    • 2019
  • Energy-based seismic design of structures has gradually become prominent in today's structural engineering investigations because of being more rational and reliable when it is compared to traditional force-based and displacement-based methods. Energy-based approaches have widely taken place in many previous studies and investigations and undoubtedly, they are going to play more important role in future seismic design codes, too. This paper aims to compute the maximum earthquake energy input to elastic single-degree-of-freedom (SDOF) systems for selected real ground motion records. A data set containing 100 real ground motion records which have the same site soil profiles has been selected from Pacific Earthquake Research (PEER) database. Response time history (RTH) analyses have been conducted for elastic SDOF systems having a constant damping ratio and natural periods of 0.1 s to 3.0 s. Totally 3000 RTH analyses have been performed and the maximum mass normalized earthquake input energy values for all records have been computed. Previous researchers' approaches have been compared to the results of RTH analyses and an approach which considers the pseudo-spectral velocity with Arias Intensity has been proposed. Graphs of the maximum earthquake input energy versus the maximum pseudo-spectral velocity have been obtained. The results show that there is a good agreement between the maximum input energy demands of RTH analysis and the other approaches and the maximum earthquake input energy is a relatively stable response parameter to be used for further seismic design and evaluations.

스펙트럼 적합 입력지반운동에 의한 면진구조의 응답 특성 (Response of Base Isolation System Subjected to Spectrum Matched Input Ground Motions)

  • 김정한;김민규;최인길
    • 한국지진공학회논문집
    • /
    • 제17권2호
    • /
    • pp.89-95
    • /
    • 2013
  • Structures in a nuclear power system are designed to be elastic even under an earthquake excitation. However a structural component such as an isolator shows inelastic behavior inherently. For the seismic assessment of nonlinear structures, response history analysis should be performed. In this study, the response of base isolation system was analyzed by response history analysis for the seismic performance assessment. Firstly, several seismic assessment criteria for a nuclear power plant structure were reviewed for the nonlinear response history analysis. Based on these criteria, the spectrum matched ground motion generation method modifying a seed earthquake ground motion time history was adjusted. Using these spectrum matched accelerograms, the distribution of displacement responses of the simplified base isolation system was evaluated. The resulting seismic responses excited by the modified ground motion time histories and the synthesized time history generated by stochastic approach were compared. And the response analysis of the base isolation system considering the different intensities in each orthogonal direction was performed.

Three-Dimensional Seismic Analysis for Spent Fuel Storage Rack

  • Lee, Gyu-Mahn;Kim, Kang-Soo;Park, Keun-Bae;Park, Jong-Kyun
    • Nuclear Engineering and Technology
    • /
    • 제30권2호
    • /
    • pp.91-98
    • /
    • 1998
  • Time history analysis is usually performed to characterize the nonlinear seismic behavior of a spent fuel storage rack(SFSR). In the past, the seismic analyses of the SFSR were performed with two-dimensional planar models, which could not account for torsional response and simultaneous multi-directional seismic input In this study, three-dimensional seismic analysis methodology is developed for the single SFSR using the ANSYS code. The 3D- Model can be used to determine the nonlinear behavior of the rack, i.e., sliding, uplifting, and impact evaluation between the fuel assembly and rack, and rack and the pool wall, This paper also reviews the 3-D modeling of the SFSR and the adequacy of the ANSYS for the seismic analysis. AS a result of the adquacy study, the method of ANSYS transient analysis with acceleration time history is suitable for the seismic analysis of highly nonlinear structure such as an SFSR but it isn't appropriate to use displacement time history of seismic input.

  • PDF

설계용 탄성응답스펙트럼으로 규준화된 인공지진동과 기록지진동의 비선형 지진응답 (Nonlinear Seismic Estimates of Recorded and Simulated Ground Motions Normalized by the Seismic Design Spectrum)

  • 전대한;강병두;김재웅
    • 한국지진공학회논문집
    • /
    • 제15권5호
    • /
    • pp.25-33
    • /
    • 2011
  • 비선형 시간이력응답해석에서 입력지진동은 구조물의 탄소성 지진응답을 결정짓는 중요한 요소이다. 시간이력해석에 사용되는 기록지진동파형은 지진발생 메카니즘, 전달경로, 지반의 성질에 따른 여러 가지 인자가 복잡하게 관련되어 있기 때문에 구조물의 지진응답해석에 사용될 일반성을 갖는 입력지진동을 선정하는 것은 매우 어려운 문제이다. 본 논문은 실무에서 내진설계용 지진동으로 가장 선호하지 않는 입력지진동을 선정하여 인공지진동파형을 작성하였다. 인공지진동은 기록지진동과 동일한 위상각을 가지며, 감쇠정수 h=5%일 때의 설계용 스펙트럼과 거의 일치하도록 작성되었다. 기록지지동과 인공지진동을 입력한 1자유도계의 탄성 및 탄소성 지진 응답해석을 수행하여 탄소성 응답스펙트럼 및 입력에너지 응답 특성을 분석하였다. 본 연구에서 작성된 인공지진동은 건축구조물의 탄소성 지진응답해석용 입력지진동으로 충분히 타당성이 있다고 사료된다.

역T형 옹벽의 지진시 거동특성 Part II : 입력 지진파의 영향 (Seismic Behavior of Inverted T-type Wall under Earthquake Part II : Effect of Input Earthquake Motion)

  • 이진선
    • 한국지진공학회논문집
    • /
    • 제20권1호
    • /
    • pp.9-19
    • /
    • 2016
  • Permanent deformation plays a key role in performance based earthquake resistant design. In order to estimate permanent deformation after earthquake, it is essential to secure reliable response history analysis(RHA) as well as earthquake scenario. This study focuses on permanent deformation of an inverted T-type wall under earthquake. The study is composed of two separate parts. The first one is on the verification of RHA and the second one is on an effect of input earthquake motion. The former is discussed in companion paper and the latter in this paper. In order to investigate the effect of an input earthquake motion on the permanent deformation, three bins of spectral matched real earthquake records with different magnitude, regions, epicentral distance are constructed. Parametric study was performed using the verified RHA through the companion paper for each earthquake records in the bins. The most influential parameter affecting permanent displacement is magnitude. The other parameters describing earthquake motion are not significant enough to increase permanent displacement of the inverted T-type wall except for energy related parameters(AI, CI, SEI).

Study on seismic performance of steel frame with archaized-style under pseudo-dynamic loading

  • Liu, Zuqiang;Zhou, Chaofeng;Xue, Jianyang
    • Earthquakes and Structures
    • /
    • 제17권1호
    • /
    • pp.39-48
    • /
    • 2019
  • This paper presents an experimental study on a 1/2 scale steel frame with archaized-style under the pseudo-dynamic loading. Four seismic waves, including El Centro wave, Taft wave, Lanzhou wave and Wenchuan wave, were input during the test. The hysteresis characteristic, energy dissipation acceleration response, displacement response, strength, stiffness and strain were analyzed. Based on the experiment, the elastoplastic dynamic time-history analysis was carried out with the software ABAQUS. The stress distribution and failure mode were obtained. The results indicate that the steel frame with archaized-style was in elastic stage when the peak acceleration of input wave was no more than 400 gal. Under Wenchuan wave with peak acceleration of 620 gal, the steel frame enters into the elastoplastic stage, the maximum inter-story drift was 1/203 and the bearing capacity still tended to increase. During the loading process, Dou-Gong yielded first and played the role of the first seismic fortification line, and then beam ends and column bottom ends yielded in turn. The steel frame with archaized-style has good seismic performance and meets the seismic design requirement of Chinese code.

Seismic performance evaluation of coupled core walls with concrete and steel coupling beams

  • Fortney, Patrick J.;Shahrooz, Bahram M.;Rassati, Gian A.
    • Steel and Composite Structures
    • /
    • 제7권4호
    • /
    • pp.279-301
    • /
    • 2007
  • When coupling beams are proportioned appropriately in coupled core wall (CCW) systems, the input energy from ground motions is dissipated primarily through inelastic deformations in plastic hinge regions at the ends of the coupling beams. It is desirable that the plastic hinges form at the beam ends while the base wall piers remain elastic. The strength and stiffness of the coupling beams are, therefore, crucial if the desired global behavior of the CCW system is to be achieved. This paper presents the results of nonlinear response history analysis of two 20-story CCW buildings. Both buildings have the same geometric dimensions, and the components of the buildings are designed based on the equivalent lateral force procedure. However, one building is fitted with steel coupling beams while the other is fitted with diagonally reinforced concrete coupling beams. The force-deflection relationships of both beams are based on experimental data, while the moment-curvature and axial load-moment relationships of the wall piers are analytically generated from cross-sectional fiber analyses. Using the aforementioned beam and wall properties, nonlinear response history analyses are performed. Superiority of the steel coupling beams is demonstrated through detailed evaluations of local and global responses computed for a number of recorded and artificially generated ground motions.

비구조요소의 내진 설계를 위한 기존 층응답스펙트럼의 평가 (A Study on Evaluation of Floor Response Spectrum for Seismic Design of Non-Structural Components)

  • 최경석;이원호;양원직;김형준
    • 한국지진공학회논문집
    • /
    • 제17권6호
    • /
    • pp.279-291
    • /
    • 2013
  • The seismic damage of non-structural components, such as communication facilities, causes direct economic losses as well as indirect losses which result from social chaos occurring with downtime of communication and financial management network systems. The current Korean seismic code, KBC2009, prescribes the design criteria and requirements of non-structural components based on their elastic response. However, it is difficult for KBC to reflect the dynamic characteristics of structures where non-structural components exist. In this study, both linear and nonlinear time history analyses of structures with various analysis parameters were carried out and floor acceleration spectra obtained from analyses were compared with both ground acceleration spectra used for input records of the analyses and the design floor acceleration spectrum proposed by National Radio Research Agency. Also, this study investigates to find out the influence of structural dynamic characteristics on the floor acceleration spectra. The analysis results show that the acceleration amplification is observed due to the resonance phenomenon and such amplification increases with the increase of building heights and with the decrease of structure's energy dissipation capacities.