• Title/Summary/Keyword: input energy

Search Result 2,472, Processing Time 0.028 seconds

A Study on the Utilization and Control Method of Hybrid Switching Tap Based Automatic Voltage Regulator on Smart Grid (스마트그리드의 탭 전환 자동 전압 조정기의 다중 스위칭 제어 방법 및 활용 방안에 관한 연구)

  • Park, Gwang-Yun;Kim, Jung-Ryul;Kim, Byung-Gi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.31-39
    • /
    • 2012
  • In this paper, we propose a microprocessor-based automatic voltage regulator(AVR) to reduce consumers' electric energy consumption and to help controlling peak demanding power. Hybrid Switching Automatic Voltage Regulator (HS-AVR) consist of a toroidal core, several tap control switches, display and command control parts. The coil forms an autotransformer which has a serial main winding and four parallel auxiliary windings. It controls the output voltage by changing the combination of the coils and the switches. Relays are adopted as the link switches of the coils to minimize the loss. To make connecting and disconnecting time accurate, relays of the circuit have parallel TRIACs. A software phase locked loop(PLL) has been used to synchronize the timings of the switches to the voltage waveform. The software PLL informs the input voltage zero-crossing and positive/negative peak timing. The traditional voltage transformers and AVRs have a disadvantage of having a large mandatory capacity to accommodate maximum inrush current to avoid the switch contact damage. But we propose a suitable AVR for every purpose in smart grid with reduced size and increased efficiency.

A Study on the Discharge Guide Technology by infrared Laser Applied to Discharge Processing Devices (적외선 레이저에 의한 방전 유도 기술의 방전 가공 장치에의 적용 연구)

  • 조정수;이동훈;남경훈
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • In recent years, concern has been raised about the technique of controlling electrical breakdown by using laser in many fields. Especially, laser has attracted much attention in the Electro-Discharge Machining(EDM) because of its many rrents. 1berefore, this research has been perfonred to obtain fundarrental data for the discharge guide technology by a pulsed Nd:YAG laser which can be awJied to discharge processing machining. 1be experilnnts of laser-guided de discharge have been carried out at low air pressure ranging from 0.2 to 20 torr. The minimum laser-guided de discharge voltage $V_{G.min}$ at the given pressures P and distances d between an anode and a cathode was rreasured It is found that $V_{G.min}$ is much lower than the natural discharge voltage $V_{ND}$, and the values of VGrrin and $V_{ND}$ as a function of P.d has a similar tendency. The laser output energy $E_{out}$ decreases with input pulse duration $t_p$ increasing, and the rrore the value of $t_p$ increases, the higher that of V$V_{G.min}$ is obtained because the number of photons N decreases with $t_p$ increasing. In addition, the laser-guided de discharge range and the discharge guide characteristics as laser outpIt $E_{out}$ was investigated.igated.

  • PDF

Innovation Milieu and Cluster Formation of Cultural Industries in Gyeongbuk (경북 문화산업의 혁신환경과 클러스터 구축방향)

  • Choi, Jeong-Su
    • Journal of the Korean association of regional geographers
    • /
    • v.12 no.3
    • /
    • pp.364-381
    • /
    • 2006
  • Strategies for regional development has been implemented by facilitating the cultural industry since the mid 1990s. The government of Gyeongbuk attempted to establish the cluster of cultural industries and to enhance the capability of cultural industries. However, infrastructure of the industries is still weak. The most cultural industries are small-sized enterprises and are in low value-added production link in the value chain. This research examines the situation of cultural industries and then to recommend the direction of cluster of cultural industries in Gyeongbuk. The cluster of cultural industries in Gyeongbuk needs to be decentralized integration. Cultural industries in Gyeongbuk are found in dispersed regions with own cultural and industrial characteristics. The hub of cluster of cultural industries should be formulated to promote network among cultural industrial complexes in dispersed regions; thus, the hub is able to provide knowledge and information for the cultural industrial firms in Gyeongbuk. The supporting center as the hub of cluster has to input more energy to establish the on-line and off-line network among firms, and between firms and innovation agencies such as universities, cultural industrial organizations, and local governments. The cultural industrial cluster should be linked with IT cluster in Gumi and cluster of Daegu cultural industries to upgrade the value chain of cultural industries.

  • PDF

Solubilization of Dairy Sludge using Ultrasonic Pretreatment (초음파를 이용한 유가공 슬러지의 가용화)

  • Moon, Sang Jae;Jeon, Byeong Cheol;Choi, Jin Taek;Nam, Se Yong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.244-248
    • /
    • 2017
  • The effects of ultrasonic (1.2~1.7 kJ/g TS) pretreatment on the solubilization of dairy and livestock sludge were separately evaluated to investigate the possibility of recycling dairy sludge as a potential source of organic carbon. Compared to other industrial wastewater and sewage sludge, dairy sludge has higher organic matter content and no toxic materials. The solubilization rates of dairy and livestock sludge, at a specific energy input of 1.7 kJ/g TS, were 14.5% and 10.6%, respectively. After the 90-minute ultrasonic treatment, the soluble COD (chemical oxygen demand) increased about 7.1 times that of the initial SCOD, at an increase rate of $0.022m^{-1}$. In comparison, the increase in soluble nitrogen, which was ~3.4 times that of the initial soluble nitrogen concentration, was much smaller than the increase in SCOD; thus, the C/N ratio increased from 4.0 to 8.7.

Water Supply forecast Using Multiple ARMA Model Based on the Analysis of Water Consumption Mode with Wavelet Transform. (Wavelet Transform을 이용한 물수요량의 특성분석 및 다원 ARMA모형을 통한 물수요량예측)

  • Jo, Yong-Jun;Kim, Jong-Mun
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.317-326
    • /
    • 1998
  • Water consumption characteristics on the northern part of Seoul were analyzed using wavelet transform with a base function of Coiflets 5. It turns out that long term evolution mode detected at 212 scale in 1995 was in a shape of hyperbolic tangent over the entire period due to the development of Sanggae resident site. Furthermore, there was seasonal water demand having something to do with economic cycle which reached its peak at the ends of June and December. The amount of this additional consumption was about $1,700\;\textrm{cm}^3/hr$ on June and $500\;\textrm{cm}^3/hr$ on December. It was also shown that the periods of energy containing sinusoidal component were 3.13 day, 33.33 hr, 23.98 hr and 12 hr, respectively, and the amplitude of 23.98 hr component was the most humongous. The components of relatively short frequency detected at $2^i$[i = 1,2,…12] scale were following Gaussian PDF. The most reliable predictive models are multiple AR[32,16,23] and ARMA[20, 16, 10, 23] which the input of temperature from the view point of minimized predictive error, mutual independence or residuals and the availableness of reliable meteorological data. The predicted values of water supply were quite consistent with the measured data which cast a possibility of the deployment of the predictive model developed in this study for the optimal management of water supply facilities.

  • PDF

Contact forces generated by fallen debris

  • Sun, Jing;Lam, Nelson;Zhang, Lihai;Gad, Emad;Ruan, Dong
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.589-603
    • /
    • 2014
  • Expressions for determining the value of the impact force as reported in the literature and incorporated into code provisions are essentially quasi-static forces for emulating deflection. Quasi-static forces are not to be confused with contact force which is generated in the vicinity of the point of contact between the impactor and target, and contact force is responsible for damage featuring perforation and denting. The distinction between the two types of forces in the context of impact actions is not widely understood and few guidelines have been developed for their estimation. The value of the contact force can be many times higher than that of the quasi-static force and lasts for a matter of a few milli-seconds whereas the deflection of the target can evolve over a much longer time span. The stiffer the impactor the shorter the period of time to deliver the impulsive action onto the target and consequently the higher the peak value of the contact force. This phenomenon is not taken into account by any contemporary codified method of modelling impact actions which are mostly based on the considerations of momentum and energy principles. Computer software such as LS-DYNA has the capability of predicting contact force but the dynamic stiffness parameters of the impactor material which is required for input into the program has not been documented for debris materials. The alternative, direct, approach for an accurate evaluation of the damage potential of an impact scenario is by physical experimentation. However, it can be difficult to extrapolate observations from laboratory testings to behaviour in real scenarios when the underlying principles have not been established. Contact force is also difficult to measure. Thus, the amount of useful information that can be retrieved from isolated impact experiments to guide design and to quantify risk is very limited. In this paper, practical methods for estimating the amount of contact force that can be generated by the impact of a fallen debris object are introduced along with the governing principles. An experimental-calibration procedure forming part of the assessment procedure has also been verified.

Configuration of Fuel Cell Power Generation System through Power Conversion Device Design (전력변환장치 설계를 통한 연료전지 발전시스템 구성)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.129-134
    • /
    • 2021
  • Recently, the demand for electricity is gradually increasing due to the rapid industrial development and the improvement of living standards. In the case of Korea, which is highly dependent on fossil fuels due to such a surge in electricity demand, reduction and freezing of greenhouse gas emissions due to international environmental regulations will immediately lead to a contraction in industrial activities. Accordingly, there are many difficulties in competition with advanced countries that want to link the environment with the country's industrial production activities, and the development of alternative energy as a countermeasure is of great interest around the world. Among these new power generation methods, small-scale power generation facilities with relatively small capacity include photovoltaic generation, wind power generation, and fuel cell generation. Among them, the fuel cell attracts the most attention in consideration of continuous operation, high power generation efficiency, and long-term durability, which are important factors for practical use. Therefore, in this paper, the fuel cell power generation system was researched and constructed by designing the power conversion circuit necessary to finally obtain the AC power used in our daily life by using the DC power generated from the fuel cell as an input.

The use of MODIS atmospheric products to estimate cooling degree days at weather stations in South and North Korea (MODIS 대기자료를 활용한 남북한 기상관측소에서의 냉방도일 추정)

  • Yoo, Byoung Hyun;Kim, Kwang Soo;Lee, Jihye
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.2
    • /
    • pp.97-109
    • /
    • 2019
  • Degree days have been determined using temperature data measured at nearby weather stations to a site of interest to produce information for supporting decision-making on agricultural production. Alternatively, the data products of Moderate Resolution Imaging Spectroradiometer (MODIS) can be used for estimation of degree days in a given region, e.g., Korean Peninsula. The objective of this study was to develop a simple tool for processing the MODIS product for estimating cooling degree days (CDD), which would help assessment of heat stress conditions for a crop as well as energy requirement for greenhouses. A set of scripts written in R was implemented to obtain temperature profile data for the region of interest. These scripts had functionalities for processing spatial data, which include reprojection, mosaicking, and cropping. A module to extract air temperature at the surface pressure level was also developed using R extension packages such as rgdal and RcppArmadillo. Random forest (RF) models, which estimate mean temperature and CDD with a different set of MODIS data, were trained at 34 sites in South Korea during 2009 - 2018. Then, the values of CDD were calculated over Korean peninsula during the same period using those RF models. It was found that the CDD estimates using the MODIS data explained >74% of the variation in the CDD measurements at the weather stations in North Korea as well as South Korea. These results indicate that temperature data derived from the MODIS atmospheric products would be useful for reliable estimation of CDD. Our results also suggest that the MODIS data can be used for preparation of weather input data for other temperature-based agro-ecological models such as growing degree days or chill units.

Conceptual eco-hydrological model reflecting the interaction of climate-soil-vegetation-groundwater table in humid regions (습윤 지역의 기후-토양-식생-지하수위 상호작용을 반영한 개념적인 생태 수문 모형)

  • Choi, Jeonghyeon;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.9
    • /
    • pp.681-692
    • /
    • 2021
  • Vegetation processes have a significant impact on rainfall runoff processes through evapotranspiration control, but are rarely considered in the conceptual lumped hydrological model. This study evaluated the model performance of the Hapcheon Dam watershed by integrating the ecological module expressing the leaf area index data sensed remotely from the satellite into the hydrological partition module. The proposed eco-hydrological model has three main features to better represent the eco-hydrological process in humid regions. 1) The growth rate of vegetation is constrained by water shortage stress in the watershed. 2) The maximum growth of vegetation is limited by the energy of the watershed climate. 3) The interaction of vegetation and aquifers is reflected. The proposed model simultaneously simulates hydrologic components and vegetation dynamics of watershed scale. The following findings were found from the validation results using the model parameters estimated by the SCEM algorithm. 1) Estimating the parameters of the eco-hydrological model using the leaf area index and streamflow data can predict the streamflow with similar accuracy and robustness to the hydrological model without the ecological module. 2) Using the remotely sensed leaf area index without filtering as input data is not helpful in estimating streamflow. 3) The integrated eco-hydrological model can provide an excellent estimate of the seasonal variability of the leaf area index.

Field Observation of Morphological Response to Storm Waves and Sensitivity Analysis of XBeach Model at Beach and Crescentic Bar (폭풍파랑에 따른 해빈과 호형 사주 지형변화 현장 관측 및 XBeach 모델 민감도 분석)

  • Jin, Hyeok;Do, Kideok;Chang, Sungyeol;Kim, In Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.446-457
    • /
    • 2020
  • Crescentic sand bar in the coastal zone of eastern Korea is a common morphological feature and the rhythmic patterns exist constantly except for high wave energy events. However, four consecutive typhoons that directly and indirectly affected the East Sea of Korea from September to October in 2019 impacted the formation of longshore uniform sand bar and overall shoreline retreats (approx. 2 m) although repetitive erosion and accretion patterns exist near the shoreline. Widely used XBeach to predict storm erosions in the beach is utilized to investigate the morphological response to a series of storms and each storm impact (NE-E wave incidence). Several calibration processes for improved XBeach modeling are conducted by recently reported calibration methods and the optimal calibration set obtained is applied to the numerical simulation. Using observed wave, tide, and pre & post-storm bathymetries data with optimal calibration set for XBeach input, XBeach successfully reproduces erosion and accretion patterns near MSL (BSS = 0.77 (Erosion profile), 0.87 (Accretion profile)) and observed the formation of the longshore uniform sandbar. As a result of analysis of simulated total sediment transport vectors and bed level changes at each storm peak Hs, the incident wave direction contributes considerable impact to the behavior of crescentic sandbar. Moreover, not only the wave height but also storm duration affects the magnitude of the sediment transport. However, model results suggest that additional calibration processes are needed to predict the exact crest position of bar and bed level changes across the inner surfzone.