• Title/Summary/Keyword: input earthquake ground motions

Search Result 110, Processing Time 0.022 seconds

Considerations for the Generation of In-Structure Response Spectra in Seismically Isolated Structures (면진구조물 내 층응답스펙트럼 작성을 위한 고려사항)

  • Lee, Seung Jae;Kim, Jung Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.95-103
    • /
    • 2022
  • In order to evaluate the earthquake safety of equipment in structures, it is essential to analyze the In-Structure Response Spectrum (ISRS). The ISRS has a peak value at the frequency corresponding to the structural vibration mode, but the frequency and amplitude at the peak can vary because of many uncertain parameters. There are several seismic design criteria for ISRS peak-broadening for fixed base structures. However, there are no suggested criteria for constructing the design ISRS of seismically isolated structures. The ISRS of isolated structures may change due to the major uncertainty parameter of the isolator, which is the shear stiffness of the isolator and the several uncertainty parameters caused by the nonlinear behavior of isolators. This study evaluated the effects on the ISRS due to the initial stiffness of the bi-linear curve of isolators and the variation of effective stiffness by the input ground motion intensity and intense motion duration. Analyzing a simplified structural model for isolated base structure confirmed that the ISRS at the frequency of structural mode was amplified and shifted. It was found that the uncertainty of the initial stiffness of isolators significantly affects the shape of ISRS. The variation caused by the intensity and duration of input ground motions was also evaluated. These results suggested several considerations for generating ISRS for seismically isolated structures.

Application into Assessment of Liquefaction Hazard and Geotechnical Vulnerability During Earthquake with High-Precision Spatial-Ground Model for a City Development Area (도시개발 영역 고정밀 공간지반모델의 지진 시 액상화 재해 및 지반 취약성 평가 활용)

  • Kim, Han-Saem;Sun, Chang-Guk;Ha, Ik-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.5
    • /
    • pp.221-230
    • /
    • 2023
  • This study proposes a methodology for assessing seismic liquefaction hazard by implementing high-resolution three-dimensional (3D) ground models with high-density/high-precision site investigation data acquired in an area of interest, which would be linked to geotechnical numerical analysis tools. It is possible to estimate the vulnerability of earthquake-induced geotechnical phenomena (ground motion amplification, liquefaction, landslide, etc.) and their triggering complex disasters across an area for urban development with several stages of high-density datasets. In this study, the spatial-ground models for city development were built with a 3D high-precision grid of 5 m × 5 m × 1 m by applying geostatistic methods. Finally, after comparing each prediction error, the geotechnical model from the Gaussian sequential simulation is selected to assess earthquake-induced geotechnical hazards. In particular, with seven independent input earthquake motions, liquefaction analysis with finite element analyses and hazard mappings with LPI and LSN are performed reliably based on the spatial geotechnical models in the study area. Furthermore, various phenomena and parameters, including settlement in the city planning area, are assessed in terms of geotechnical vulnerability also based on the high-resolution spatial-ground modeling. This case study on the high-precision 3D ground model-based zonations in the area of interest verifies the usefulness in assessing spatially earthquake-induced hazards and geotechnical vulnerability and their decision-making support.

Nonlinear Seismic Behavior Analysis of Skewed Bridges Considering Pounding Between Deck and Abutment (상판과 교대의 충돌을 고려한 사교의 비선형 지진거동 해석)

  • Kang, Seung Woo;Choi, Kwang Kyu;Song, Si Young;Son, Min Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.301-310
    • /
    • 2016
  • There are differences in seismic behavior between non-skewed bridges and skewed bridges due to in-plane rotations caused by pounding between the skewed deck and its abutments during strong earthquake. Many advances have been made in developing design codes and guidelines for dynamic analyses of non-skewed bridges. However, there remain significant uncertainties with regard to the structural response of skewed bridges caused by unusual seismic response characteristics. The purpose of this study is performing non-linear time history analysis of the bridges using abutment-soil interaction model considering pounding between the skewed deck and its abutments, and analyzing global seismic behavior characteristics of the skewed bridges to assess the possibility of unseating. Refined bridge model with abutment back fill, shear key and elastomeric bearing was developed using non-linear spring element. In order to evaluate the amplification of longitudinal and transverse displacement response, non-linear time history analysis was performed for single span bridges. Far-fault and near-fault ground motions were used as input ground motions. According to each parameter, seismic behavior of skewed bridges was evaluated.

Proposal of new ground-motion prediction equations for elastic input energy spectra

  • Cheng, Yin;Lucchini, Andrea;Mollaioli, Fabrizio
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.485-510
    • /
    • 2014
  • In performance-based seismic design procedures Peak Ground Acceleration (PGA) and pseudo-Spectral acceleration ($S_a$) are commonly used to predict the response of structures to earthquake. Recently, research has been carried out to evaluate the predictive capability of these standard Intensity Measures (IMs) with respect to different types of structures and Engineering Demand Parameter (EDP) commonly used to measure damage. Efforts have been also spent to propose alternative IMs that are able to improve the results of the response predictions. However, most of these IMs are not usually employed in probabilistic seismic demand analyses because of the lack of reliable Ground Motion Prediction Equations (GMPEs). In order to define seismic hazard and thus to calculate demand hazard curves it is essential, in fact, to establish a GMPE for the earthquake intensity. In the light of this need, new GMPEs are proposed here for the elastic input energy spectra, energy-based intensity measures that have been shown to be good predictors of both structural and non-structural damage for many types of structures. The proposed GMPEs are developed using mixed-effects models by empirical regressions on a large number of strong-motions selected from the NGA database. Parametric analyses are carried out to show the effect of some properties variation, such as fault mechanism, type of soil, earthquake magnitude and distance, on the considered IMs. Results of comparisons between the proposed GMPEs and other from the literature are finally shown.

Development of Analytical Model to Predict The Inelastic Behavior of Reinforced Concrete And Masonry Structures (RC 및 조적조구조물의 비탄성 거동예측을 위한 해석적 모델개발)

  • 홍원기;이호범;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.160-167
    • /
    • 1993
  • In earthquake structural engineering towards a better understanding of both the earthquake ground motion and structural response, the design of concrete structures to resist strong ground input motions is not a simple matter, and analytical models for such structures must be developed from a design perspective that accounts for the complexities of the structural responses. The primary objective earthquake structural engineering research is to ensure the safety of structures by understanding and improving a design menthodology. Ideally, this would require the development of an analytical model related to a design methodology that ensures a dectile performance. For the accurate assessment of the adequacy of analytically developed model, experiments conducted to study the inplane inelastic cyclic behavior of structures should verify the analytical approach. The paper is to demonstrate experimentally verified analytical method that provide the adequate degree of safety and confidience in the behavior of R.C. structural components and further attempts to extend the developed modeling technique for use by practicing structural engineers.

  • PDF

Evaluation of seismic energy demand and its application on design of buckling-restrained braced frames

  • Choi, Hyunhoon;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • v.31 no.1
    • /
    • pp.93-112
    • /
    • 2009
  • In this study seismic analyses of steel structures were carried out to examine the effect of ground motion characteristics and structural properties on energy demands using 100 earthquake ground motions recorded in different soil conditions, and the results were compared with those of previous works. Analysis results show that ductility ratios and the site conditions have significant influence on input energy. The ratio of hysteretic to input energy is considerably influenced by the ductility ratio and the strong motion duration. It is also observed that as the predominant periods of the input energy spectra are significantly larger than those of acceleration response spectra used in the strength design, the strength demand on a structure designed based on energy should be checked especially in short period structures. For that reason framed structures with buckling-restrained-braces (BRBs) were designed in such a way that all the input energy was dissipated by the hysteretic energy of the BRBs, and the results were compared with those designed by conventional strength-based design procedure.

Analysis of seismic mid-column pounding between low rise buildings with unequal heights

  • Jiang, Shan;Zhai, Changhai;Zhang, Chunwei;Ning, Ning
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.395-402
    • /
    • 2018
  • Floor location of adjacent buildings may be different in terms of height elevation, and thus, the slab may hit on the columns of adjacent insufficiently separated buildings during severe ground motions. Such impacts, often referred to as mid-column pounding, can be catastrophic. Substantial pounding damage or even total collapse of structures was often observed in large amount of adjacent low rise buildings. The research on the mid-column pounding between low rise buildings is in urgency need. In present study, the responses of two adjacent low rise buildings with unequal heights and different dynamic properties have been analyzed. Parametric studies have also been conducted to assess the influence of story height difference, gap distance and input direction of ground motion on the effect of structural pounding response. Another emphasis of this study is to analyze the near-fault effect, which is important for the structures located in the near-fault area. The analysis results show that collisions exhibit significant influence on the local shear force response of the column suffering impact. Because of asymmetric configuration of systems, the structural seismic behavior is distinct by varying the incident directions of the ground motions. Results also show that near-fault earthquakes induced ground motions can cause more significant effect on the pounding responses.

Estimation of the Isolator Displacement for the Performance Based Design of Nuclear Power Plants (원전 적용을 위한 면진장치의 성능기반 설계 변위 추정)

  • Kim, Jung Han;Choi, In-Kil;Kim, Min Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.291-299
    • /
    • 2014
  • There has been an increasing demand for introducing a base isolation system to secure the seismic safety of a nuclear power plant. However, the design criteria and the safety assessment methodology of a base isolated nuclear facility are still being developed. A performance based design concept for the base isolation system needs to be added to the general seismic design procedures. For the base isolation system, the displacement responses of isolators excited by the extended design basis earthquake are important as well as the design displacement. The possible displacement response by the extended design basis earthquake should be limited less than the failure displacement of the isolator. The failure of isolators were investigated by an experimental test to define the ultimate strain level of rubber bearings. The uncertainty analysis, considering the variations of the mechanical properties of isolators and input ground motions, was performed to estimate the probabilistic distribution of the isolator displacement. The relationship of the displacement response by each ground motion level was compared in view of a period elongation and a reduction of damping. Finally, several examples of isolator parameters are calculated and the considerations for an acceptable isolation design is discussed.

Expected damage for SDOF systems in soft soil sites: an energy-based approach

  • Quinde, Pablo;Reinoso, Eduardo;Teran-Gilmore, Amador;Ramos, Salvador
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.577-590
    • /
    • 2019
  • The seismic response of structures to strong ground motions is a complex problem that has been studied for decades. However, most of current seismic regulations do not assess the potential level of damage that a structure may undergo during a strong earthquake. This will happen in spite that the design objectives for any structural system are formulated in terms of acceptable levels of damage. In this article, we analyze the expected damage in single-degree-of-freedom systems subjected to long-duration ground motions generated in soft soil sites, such as those located in the lakebed of Mexico City. An energy-based methodology is formulated, under the consideration of input energy as the basis for the evaluation process, to estimate expected damage. The results of the proposed methodology are validated with damage curves established directly with nonlinear dynamic analyses.

Quantitative Analysis on Intensity of 1936 Jirisan Earthquake by Estimating Seismic Response Characteristics at the Site of Five-story Stone Pagoda in Ssang-gye-sa (쌍계사 오층 석탑 부지의 지진 응답 특성 평가를 통한 1936년 지리산 지진 세기의 정량적 분석)

  • Sun, Chang-Guk;Chung, Choong-Ki;Kim, Jae-Kwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3C
    • /
    • pp.187-196
    • /
    • 2008
  • An earthquake of magnitude 5.0 occurred at Ssang-gye-sa, a Buddhist temple in Jirisan, located near the southern border of the Korean peninsula on 4 July 1936. It resulted in severe damage of several buildings and structures in Ssang-gye-sa. Particularly, the top component of a five-story stone pagoda in the temple was tipped over and fell down during the earthquake. This earthquake damage case would be usefully applied to estimating the intensity of ground motion in the Korean peninsula, a moderate seismicity region, where strong motion has never been recorded with the exception of historic seismic events. In order to estimate the local site effects and the corresponding ground motion at Ssang-gye-sa site, intensive site investigations including borehole drilling and in-situ seismic tests such as crosshole and SASW tests were performed in the temple area. Based on the site characteristics, site-specific seismic response analyses using various input motions were conducted for a representative Ssang-gye-sa site by means of both one-dimensional equivalent-linear and nonlinear methods with six input rock outcrop acceleration levels ranging from 0.044g to 0.220g. The resultant site-specific seismic responses indicated the amplified ground motions in the short-period range near the site period of Ssang-gye-sa. Furthermore, the intensity on rock outcrop of the 1936 Jirisan earthquake was estimated by making a comparison between the site responses analysis results in this study and the full-scaled seismic test of pagoda model in the prior study.