• Title/Summary/Keyword: input delay system

Search Result 381, Processing Time 0.03 seconds

Reducing Effect of Residual Vibration Through Command Input Shaped Considering Partial Modes (부분 모드만을 고려하여 성형된 입력을 이용한 잔류 진동의 감소 효과)

  • Jung, Kwangsuk
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.1
    • /
    • pp.18-23
    • /
    • 2011
  • Shaping an input command through considering the resonant modes of multi degrees of freedom system, it is possible to realize the wanted motion, without exciting the uncontrollable modes of the flexible system. But, an increase of modes to be considered brings inevitably about the time delay due to an excessive rising time. On the purpose of reducing the rising time, only the interesting and dominant modes can be considered to determine the timing pulses of input shaper. In this paper, an effect of shaper by the partial modes is analysed for a specific system and the input shapers by the partial modes are analysed for three d.o.f damped system, using Matlab simulation.

  • PDF

Automatic Diameter Control for Crystal Grower (단결정 실리콘 성장기의 자동 직경 제어)

  • 박종식;이재민;양승현;이석원
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2799-2802
    • /
    • 2003
  • The automatic diameter control system of the Crystal Grower has a good performance with only PD control. But it contained the integrator the plant which has a long time delay. In this paper. we show the secondary approximate model and applies time delay controller which is good performance for in the long time delay plant. It will be able to improve the response characteristic against a standard input and a load disturbance.

  • PDF

LQ-PID controller design for the Plant with small delay (작은지연을 갖는 플랜트에 대한 LQ-PID 제어기 설계)

  • Park, Jae-Kyu;Suh, Byung-Suhl
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.327-330
    • /
    • 2003
  • This paper presents an optimal robust LQ-PID controller design method for the second-order system with both small state delay and small input delay to satisfy the design specifications in time domain. The modified sensitivity approach method is considered for its optimization.

  • PDF

Development of a variable resistance-capacitance model with time delay for urea-SCR system

  • Feng, Tan;Lu, Lin
    • Environmental Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.155-161
    • /
    • 2015
  • Experimental research shows that the nitric oxides ($NO_X$) concentration track at the outlet of selective catalytic reduction (SCR) catalyst with a transient variation of Adblue dosage has a time delay and it features a characteristic of resistance-capacitance (RC). The phenomenon brings obstacles to get the simultaneously $NO_X$ expected to be reduced and equi-molar ammonia available to SCR reaction, which finally inhibits $NO_X$ conversion efficiency. Generally, engine loads change frequently, which triggers a rapid changing of Adblue dosage, and it aggravates the air quality that are caused by $NO_X$ emission and ammonia slip. In order to increase the conversion efficiency of $NO_X$ and avoid secondary pollution, the paper gives a comprehensive analysis of the SCR system and tells readers the key factors that affect time delay and RC characteristics. Accordingly, a map of time delay is established and a solution method for time constant and proportional constant is carried out. Finally, the paper accurately describes the input-output state relation of SCR system by using "variable RC model with time delay". The model can be used for a real-time correction of Adblue dosage, which can increase the conversion efficiency of $NO_X$ in SCR system and avoid secondary pollution forming. Obviously, the results of the work discover an avenue for the SCR control strategy.

An Integrated Expert Model for Delay Management in Construction Projects

  • jalal, Majid Parchami;Yousefi, Elham
    • Journal of Construction Engineering and Project Management
    • /
    • v.7 no.3
    • /
    • pp.1-14
    • /
    • 2017
  • Delay claim should actually be supported by a set of proper information so that the contractors could prove their validity. The so-called information should be able to clarify the relationship between delay events and how they impact on the whole project. Therefore, exploiting an integrated system by people who are involved in construction business would certainly prove helpful. In the present study, delay analysis methods have been investigated along with selecting a relatively comprehensive method which has been modified, and eventually, a novel model and its required modules have been proposed for evaluating delay claims. The suggested integrated model is formed to identify delayed events, to classify delays, to measure the impacts of delays on the project scheduling, and finally to estimate the damages which were caused by those so-called delays. A decision support system (DSS) model which is related to the integrated system is actually extracted from Iran's general contract conditions, that is, 4311 magazine (equivalent to red FIDIC book). It is then programmed and coded by C# program. This DSS model can be used as an input of Easy Plan program. In addition, at the end of this research, the coded DSS has been used along with the so-called program so that a modified and developed model could be generated.

Motion Analysis with Time Delay Neural Network (시간 지연 신경망을 이용한 동작 분석)

  • Jang, Dong-Sik;Lee, Man-Hee;Lee, Jong-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.419-426
    • /
    • 1999
  • A novel motion analysis system is presented in this paper. The proposed system is inspired by processing functions observed in the fly visual system, which detects changes in input light intensities, determines motion on both the local and the wide-field levels. The system has several differences from conventional motion analysis system. First, conventional systems usually focused on matching similar feature or optical flow, but neural network is applied in this system. Back propagation is used by learning method, and Tine Delay Neural Network (TDNN) is also used as analysis method. Second, while conventional systems usually limited on only two frames of sequence, the proposed system accept multiple frames of sequence. The experimental results showed a 94.7% correct rate with a speed of 71.47 milli seconds for real and synthetic images.

  • PDF

GPS/INS Integration using Vector Delay Lock Loop Processing Technique

  • Kim, Hyun-Soo;Bu, Sung-Chun;Jee, Gyu-In
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2641-2647
    • /
    • 2003
  • Conventional DLLs estimate the delay times of satellite signals individually and feed back these measurements to the VCO independently. But VDLL estimates delay times and user position directly and then estimate the feedback term for VCO using the estimated position changes. In this process, input measurements are treated as vectors and these vectors are used for navigation. First advantage of VDLL is that noise is reduced in all of the tracking channels making them less likely to enter the nonlinear region and fall below threshold. Second is that VDLL can operate successfully when the conventional independent parallel DLL approach fails completely. It means that VDLL receiver can get enough total signal power to track successfully to obtain accurate position estimates under the same conditions where the signal strength from each individual satellite is so low or week that none of the individual scalar DLL can remain in lock when operating independently. To operate VDLL successfully, it needs to know the initial user dynamics and position and prevents total system from the divergence. The suggested integration method is to use the inertial navigation system to provide initial dynamics for VDLL and to maintain total system stable. We designed the GPS/INS integrated navigation system. This new type of integrated system contained the vector pseudorange format generation block, VDLL signal processing block, position estimation block and the conversion block from position change to delay time feedback term aided by INS.

  • PDF

A Time Delay-Based Gain Scheduled Control and It's Application to Electromagnetic Suspension System (시간지연 이득계획제어와 자기부상시스템에의 응용)

  • Hong Ho-Kyung;Jo Jeong-Min;Cho Heung-Jae
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.569-575
    • /
    • 2005
  • This paper proposes a gain scheduled control technique using time-delay for the nonlinear system with plant uncertainties and unexpected disturbances. The time delay-based gain scheduled control depends on a direct estimation of a function representing the effect of uncertainties. The information from the estimation is used to cancel the unknown dynamics and the unexpected disturbances simultaneously. The proposed estimation scheme with a finite convergence time is formulated in order to estimate the unknown scheduling variable variation. In other words, the time delay-based gain scheduled control uses the past observation of the system's response and the control input to directly modify the control actions rather than to adjust the controller gains or to identify system parameters. It has a simple structure so as to minimize the computational burden. The benefits of this proposed scheme are demonstrated in the simulation of an electromagnetic suspension system with plant uncertainties and external disturbances, and the proposed controller is compared with the conventional state feedback controller.

Output Feedback Control for Nonlinear System with Time Delay (시간지연을 갖는 비선형 시스템의 출력 피드백 제어)

  • Lee, Sungryul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.239-243
    • /
    • 2013
  • This paper presents the output feedback control design for triangular nonlinear systems with input delay. The proposed controller is composed of a high gain observer and a linear controller. It is shown that by using Lyapunov-Krasovskii theorem, the proposed controller ensures an asymptotic stability for sufficiently small input delay. Finally, an illustrative example is given in order to show the effectiveness of our design method.

Delay-Dependent Stabilization for Uncertain Dynamic Systems with State and Input Delays (상태변수와 입력변수에 시간지연을 갖는 불확정 동적 시스템의 제어기 설계)

  • Cho Hyun-Ju;Park Ju-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.4
    • /
    • pp.215-219
    • /
    • 2005
  • This paper aims at asymptotic stabilization for uncertain dynamic systems with state and input delays. We propose a memoryless state feedback controller which maximizes the delay bound for guaranteeing stability of the system. Using Lyapunov method and linear matrix inequality (LMI) approach, a delay-dependent stabilization criterion is devised by taking the relationship between the terms in the Leibniz-Newton formula into account. The criterion is represented in terms of LMIs, which can be solved by various efficient convex optimization algorithms. Numerical examples are given to illustrate our main method.